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Abstract—JavaScript-based timing attacks have been greatly
explored over the last few years. They rely on subtle timing
differences to infer information that should not be available
inside of the JavaScript sandbox. In reaction to these attacks,
the W3C and browser vendors have implemented several
countermeasures, with an important focus on JavaScript
timers. However, as these attacks multiplied in the last
years, so did the countermeasures, in a cat-and-mouse game
fashion.

In this paper, we present the evolution and current
situation of timing attacks in browsers, as well as statistical
tools to characterize available timers. Our goal is to present
a clear view of the attack surface and understand: what are
the main prerequisites and classes of browser-based timing
attacks and what are the main countermeasures. We focus
on determining to what extent the changes on timing-based
countermeasures impact browser security. In particular, we
show that the shift in protecting against transient execution
attacks has re-enabled other attacks such as microarchitec-
tural side-channel attacks with a higher bandwidth than
what was possible just two years ago.

1. Introduction

Subtle variations of computation time can reveal infor-
mation about the state of a system. Research has developed
a variety of side and covert channels, allowing potential
attackers to extract secrets or track user behavior. Timing
attacks can aim at different components of the microar-
chitecture, e.g., cache, DRAM, and are purely software-
based. These attacks have two common prerequisites: they
run code on the victim’s hardware, and they rely on
high-resolution timers that can distinguish small timing
variations in the order of 100 ns. Most of the timing attacks
are implemented in native code, allowing the attacker to
have great control over the memory and cycle-accurate
timers.

In contrast, JavaScript is a high-level object-oriented
interpreted scripting language, following the ECMAscript
standard [30]. Contrary to native code, it is much easier
to run JavaScript code on a victim’s system as it is a
major component of the web. Almost all websites use
JavaScript to execute code on the client side and by
visiting a page, a client can download and execute dozens
of different scripts. For security purposes, JavaScript
code runs inside a sandboxed environment, restricting
access to local files, virtual or physical memory addresses
and native instructions. These restrictions make it harder

to implement microarchitectural attacks. However, Oren
et al. [45] implemented a fully JavaScript-based cache
attack, running entirely in the browser. Based on Prime+
Probe [42], it allows an attacker to track user behavior and
recover information belonging to other processes running
on the same system.

To try and mitigate JavaScript-based timing attacks,
browser vendors have developed countermeasures specif-
ically targeting timers. Notably, they decreased timers’
resolution to make them less precise and introduced jitter
to add noise in measurements. Other security features like
site isolation [48] were added to reinforce the security of
the browser and act as a novel line of defense against timing
attacks. Amid all these changes, it can be hard to keep
track of all the different evolutions that browsers underwent.
Particularly, it is unclear how the attacks described in the
literature are impacted by current countermeasures.

In this SoK, we aim to provide a clear view of the
vulnerability of browsers to timing attacks. In the first
part, we take a broad look at the research done in the
area to systematize it. We provide a taxonomy of attacks
with their prerequisites and classify the countermeasures
based on the resources they target. In the second part,
our goal is to assess the true efficiency of timing-based
countermeasures after seeing how much they changed over
the years. In order to gain proper insight, we implemented
our own performance.rdtsc() high-precision timer
into Chromium and Firefox so that we can deconstruct
studied timers into their most basic blocks. With its help,
we identified that recent countermeasures present great
advances against timing attacks but they also present
noticeable steps back. For example, with the introduction
of COOP/COEP, Firefox 79 gained a robust resource
isolation mechanism but lost a lot with regards to timing
attacks. Before, an attacker needed several minutes to
build an eviction set to conduct an attack. Now, with the
resolution changed from 1ms to 20 µs, we show that it
can be setup in just a single second. Another problem is
the recent reintroduction of SharedArrayBuffer after
it was deactivated due to the disclosure of Spectre [38].
Its presence introduces a real security risk because a
malicious script can abuse it by creating a very powerful
timer that has an incredibly high resolution with very
low overhead. By lowering timing-based countermeasures,
all the prerequisites for large classes of timing attacks
are met, meaning that these attacks can theoretically be
implemented.



Contributions. This paper makes the following contribu-
tions:

• We provide a classification of prerequisites for timing
attacks and present the most notable classes of timing
attacks (Section 2).

• We classify countermeasures based on the resources
they target (Section 3).

• We present tools to analyze timers and the threat they
pose for timing attacks. Notably, we detail our custom
timer and automatic tests that measure the resolution
and measurement overhead of several built-in timers,
which can easily be reproduced for other systems and
future browser versions (Section 4).

• We present a longitudinal study of browsers’ timing-
based countermeasures. (Section 5).

2. Timing attacks in browsers

Timing attacks in browsers are a large class of attacks
exploiting timing differences in computations in order to
infer private information. As they are mainly based on
JavaScript, the attacker code will, by design, always be
executed on the victim’s hardware. In this section, we aim
at systematizing timing attacks in browsers, by classifying
prerequisites for different classes of attacks.

2.1. Attack prerequisites

We systematize the major timing attacks prerequisites
in order to classify them and better understand the outline
of attacks. We have identified the following prerequisites:
P1: High-resolution timers,
P2: Shared hardware resources,
P3: Transient execution,
P4: Shared system resources,
P5: Shared browser features.

2.1.1. P1: High-resolution timers
Definition. In this work, we call a timer, or a clock, a
tool that allows to differentiate two events based on their
respective timings. To do so, a timer relies on an operation
that needs to:

• Be constant over time so that it provides a reliable
non-varying unit of time.

• Be free running so that it allows the computation
of time differences without blocking the program
execution.

We call clock edge the moment where a constant time
operation ends and the following starts. A timer can
differentiate two events if each of them crosses a different
number of clock edges. The duration of the constant time
operation is the smallest amount of time this timer can
measure, i.e., its resolution.

Timer interpolation. By definition, a timer cannot mea-
sure an event shorter than its resolution. Yet, it is possible
to bypass this limitation by using interpolation to retrieve
an even finer-grained timer. The idea behind it is straight
forward: one counts the number of times a shorter non-
free running operation can be executed. We refer to such
an operation as a tick. This tick can simply be writing
repeatedly some data to memory or increasing a custom
counter by one.

Time

Clock period

Event 1 TickTick TickTick TickTick TickTick

(a) The interpolated time is 4 ticks.

Time

Event 2 TickTick TickTick TickTick

(b) The interpolated time is 3 ticks.

Figure 1: Clock interpolation: Counting the number of ticks
between the end of the event and end of the clock period.
Even if both events are shorter than the clock period, we
can distinguish them by their interpolated time: event 1
has an interpolated time of 4 ticks where event 2 has only
3 ticks.

Figure 1 provides an example of how timer interpola-
tion works. Events 1 and 2 have a shorter execution time
than the clock period i.e., the resolution. Interpolation is
then needed to differentiate them based on their timing.
By running events at the beginning of a clock period and
counting ticks when they are finished, we can conclude
how fast each of them is when the next clock edge is
reached. The more ticks are counted, the faster the event
is. In Figure 1, Event 1 is faster than Event 2 as it has
4 ticks against 3. It should be noted that the interpolated
timer is equivalent to a timer with a resolution equals to
the duration of a tick.

performance.now(). The JavaScript High Resolution
Time API [32] offers access to the performance.
now() method, which returns a high-resolution timestamp.
The timestamp value represents the time elapsed since the
beginning of the current document lifetime in ms, originally
with a resolution in the order of 1 ns.

For security reasons, performance.now()’s reso-
lution has evolved over time. However, in 2017, Schwarz
et al. [53] demonstrated that it is still possible to recover
high-resolution timers regardless of the base resolution, by
using a variable increment as a tick.

SharedArrayBuffer-based clock. Initially a single-
threaded language, JavaScript has evolved into a multi-
threaded paradigm. ECMA2017 introduced the Shared
ArrayBuffer API [29] in order to accelerate computa-
tions between threads. It allows creating an array shared
between the main thread and a sub-thread, or web worker.
First implemented in Firefox 46 and Chrome 60, they
were used by Schwarz et al. [53] to build a high-resolution
timer.

Figure 2 illustrates a simple SharedArrayBuffer-
based clock. The attacker creates a clock web worker,
and shares a SharedArrayBuffer between the threads.
The clock thread is an infinite loop, perpetually increment-
ing a value in the SharedArrayBuffer. This value can
be consulted at any time by the attacker, and represents a
timestamp. The resolution of this timer is very high as it is
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Figure 2: Simple SharedArrayBuffer based clock:
To time an event, the main thread evaluates the shared
value before and after its event.

of the order of the computation time of a shared operation,
such as incrementing or reading a shared variable.

Other JavaScript timers. The W3C standards describe
other API timers accessible in JavaScript, such as Date.
now() [23], Window.requestAnimationFrame()
[26] or Window.setTimeout() [27], but they offer a
resolution lower than the one of performance.now().
Schwarz et al. [53] also designed other auxiliary timers.
They presented clocks based on CSS animations. An
attacker can run code JavaScript code at each screen
refresh, i.e., every 16.66ms for a typical refresh rate of
60Hz, thus this can be used for interpolation as well. This
is equivalent to using Window.requestAnimation
Frame() directly in JavaScript.

Most of these timers are less efficient than the one
previously developed and are thus not in the scope of this
paper.

2.1.2. P2: Shared hardware resources
Modern CPUs present major microarchitectural opti-

mizations in order to compute rapidly and efficiently, often
solely created with performance in mind. Since hardware
is situated below software security rings and components
are often shared between processes, contention at the
microarchitectural level can be the root cause of software-
based side-channel attacks. By design, these attacks are
also less fixable than software.

2.1.3. P3: Transient execution
Modern CPUs use out-of-order execution and specula-

tive execution in order to optimize computations and make
the best use of resources.

Out-of-Order execution. Instead of executing instructions
in a linear order, CPUs execute them out-of-order, depend-
ing on input and execution units availability. The re-order
buffer (ROB) then commits the instructions in-order to
the architectural states. In case of interruptions occurring
during Out-of-Order, the CPU flushes the instructions out
of the ROB. Such computed but not committed micro-
instructions are called transient instructions.

Speculative execution. During code execution, condi-
tional branches and data dependencies would force the
CPU to wait until a certain dependency or branch is
resolved before continuing. Such stalling decreases the
maximum performance a CPU can achieve. To address
this, CPUs deploy strategies to speculate on the outcome
of a condition and continue executing the predicted path,

Table 1: Comparison of attacks prerequisites. All attacks
require P1, but with different ranges of resolutions.

Required
resolution (P1) P2 P3 P4 P5

Spy in the sandbox [45] 100ns
Rowhammer.js [34] 100ns
Website fingerprinting [54] 10−100ms
DRAM covert channel [53] 10ns
Breaking ASLR [31] 100ns
Spectre [38] 100ns
ret2spec [43]1 100ns
RIDL [61] 100ns
Store-to-Leak [15] 100ns
Memory deduplication [33] 1 µs
Loophole [62]2 100 µs
Extension side channel [59] 100ns

saving the results in the re-order buffer. After the resolution
of the branch or dependency, if the prediction was correct,
the pre-computed instructions are committed from the ROB.
However, if the prediction was incorrect, the CPU deletes
all the transient instructions from the buffer and roll-back
to the last correct state.

2.1.4. P4: Shared system resources
In a browser, system resources are often shared between

contexts. Memory in particular can be shared between all
code running in the same browser process.

2.1.5. P5: Shared browser features
A lot of purely software features are shared between

contexts or tabs in browsers. This is the case for his-
tory, cookies, event loops or renderers for example. The
difference in timings of such features’ operation can
leak information between tabs and inform about a user’s
behavior.

2.2. Attack classes

We now give an overview of the major classes of timing
attacks in browsers, along with their major characteristics
and prerequisites. Table 1 illustrates the prerequisites for
a sample of state-of-the-art timing attacks in browsers.

2.2.1. Hardware-based side-channel attacks
Hardware-based side-channel attacks exploit hardware

components shared by all processes in the system. By
measuring the computation time of specific operations, an
attacker can infer the state of certain components. These
attacks share two major prerequisites:
P1: High-resolution timers,
P2: Shared hardware components, e.g., cache, DRAM.
The resolution of required timers vary in function of the
attacked hardware, but typically spans from 10−100 ns
in order to potentially distinguish different states in the
hardware.

Cache-based attacks. A cache is a small memory that sits
close to the CPU cores. Modern CPUs employ multiple lev-
els of caches, the smallest being the fastest, and the largest
being the slowest. Cache attacks exploit the difference of

1. ret2spec can still break ASLR with site isolation.
2. Since each process has its own event loop, the attack is not

implementable on recent Chrome versions.



timing between a cache hit (i.e., memory is served from
the cache) and a cache miss (i.e., memory is served from
the DRAM). Typically, such attacks require timers with a
resolution in the order of 100 ns. By monitoring a specific
cache section, an attacker can retrieve information about
the actions of other processes. Two main variants exist.
First, Flush+Reload [35], [67] can monitor a single cache
line, but requires shared memory between an attacker and
the victim. Second, Prime+Probe [42], [47] can monitor a
cache set, by continuously accessing an eviction set, i.e., a
set of addresses sharing this same cache set, and measuring
the time the Probe step takes. An attacker learns whether
another process has loaded a line in the same cache set
between two Probe steps. This attack does not require any
shared memory, nor any specific instruction to evict cache
lines from a cache set. It can therefore be implemented in
JavaScript.

Oren et al. [45] were the first to implement Prime+
Probe in JavaScript, therefore extending its attack model
drastically. They demonstrate a covert channel and side-
channel attacks to track user behavior. Gruss et al. [34]
used Prime+Probe in order to evict specific cache sets
and allow the implementation of the DRAM fault attack
Rowhammer [37] in JavaScript. Shusterman et al. [54]
monitored the whole last-level cache in order to fingerprint
websites opened in other browser tabs, without requiring
high-resolution timers.

Other hardware side-channel attacks. Gras et al. [31]
demonstrated that it is possible to de-randomize virtual
addresses from ASLR from the JavaScript sandboxed
environment. Andrysco et al. [9] exploited floating point
computation timing differences to perform history sniffing.
In a paper studying auxiliary time sources, Schwarz et al.
[53] introduced a DRAM covert channel that is purely
based on JavaScript. Sanchez-Rola et al. [50] showed a
method relying on computer internal clock imperfections
to fingerprint unique machines. Schwarz et al. [51] pre-
sented JavaScript template attacks to create fingerprints
and retrieved the instruction-set architecture and the used
memory allocator.

2.2.2. Transient execution attacks
With Spectre [38], Kocher et al. paved the way to a

new class of attacks, exploiting transient execution to leak
protected data. Some of these attacks can be implemented
in browsers in JavaScript, including Spectre-PHT [16]. This
class of attacks is very wide, but shares some prerequisites:
P1+P2: A hardware covert channel to extract leaked data,
P3: Transient execution,
P4: Shared system resources—finding secrets to leak.

State-of-the-art attacks. P3 is a wide prerequisite: the
Spectre attack alone possesses many variants, each target-
ing different optimizations [16]. Most crucially, different
attacks target different secrets to leak (P4), i.e., in the same
address space, or across address spaces. Maisuradze et al.
[43] demonstrated how a JavaScript attacker could read
outside of the sandboxed environment by exploiting return
stack buffers misspeculations. Van Schaik et al. introduced
RIDL [61], a class of transient attacks able to leak in-flight
data with unprivileged code, including JavaScript. Canella
et al. [15] introduced Store-to-Leak, and break KASLR
and the ASLR of the browser in JavaScript.

Most of these attacks need a covert channel to extract
the leaked data (P1+P2). To this purpose, they mainly use
Prime+Probe, hence require the same timer resolution as
cache-based attacks, around 100 ns.

2.2.3. Attacks based on system resources
By exploiting shared system resources, an attacker can

also retrieve information using a side-channel attack. These
attacks share the following prerequisites:
P1: High-resolution timers,
P4: Shared system resources.

State-of-the-art attacks. Gruss et al. [33] exploited mem-
ory deduplication to let an attacker leak data from the
sandboxed environment. Lipp et al. [41] managed to time
keystrokes from JavaScript by detecting the number of
interruptions during a fixed time frame.

2.2.4. Attacks based on browser resources
In order to have a uniform and efficient browsing

experience, most browsers share information between tabs
or processes. This includes, among others, browsing history,
browser extensions, or event loops. However, this sharing
of information, even if not directly reachable in JavaScript,
can leak private information to a malicious site. This class
of attacks shares two prerequisites:
P1: High-resolution timers,
P5: Shared browser resources.

State-of-the-art attacks. Mowery et al. [44] implemented
JavaScript-based fingerprinting in 2011, by exploiting
engine characteristics, as well as showing the inefficiency
(if not threat) of privacy extensions such as NoScript [1].
Van Goethem et al. [60] developed various timing attacks
against software implementations to determine the size of
external resources, thus allowing an attacker to retrieve
private information about a user browsing social networks,
such as the user gender, age, or contacts. Van Goethem
and Joosen [59] also exploited timing attacks to connect
browsing contexts that are supposed to be isolated. Sanchez-
Rola et al. [49] and Van Goethem and Joosen [59] exploited
timing differences on browser extensions operation, allow-
ing an attacker to enumerate the extensions or link to
different browsing contexts. Vila and Köpf [62] exploited
the browser shared event loop to monitor the behavior of
other tabs in the same browser. Stone et al. [55] exploited
the timings of various rendering tasks to retrieve personal
information, e.g., browsing history.

3. Countermeasures in browsers

In this section, we systematize the different counter-
measures proposed by academics or browser vendors. We
have categorized such countermeasures in three classes:
C1: Isolation-based countermeasures,
C2: Timing-based countermeasures,
C3: Browser resources based.

3.1. C1: Isolation

Isolation is a staple of web security. Separating re-
sources and communication between contexts reduce the
threat surface drastically.



Same-origin policy. The same-origin policy [21] is a
major security feature of the web. An origin is defined by
the tuple (Protocol, Port, Host). The same-origin policy
restricts read access to resources loaded from a different
origin. This means that data from one website, e.g.,
authentication cookies, are not accessible from another
website loaded in another tab. This countermeasure aims at
mitigating, among others, attacks using browser resources
by removing P5.

However, the same-origin policy has no impact on other
type of timing attacks. In particular, Spectre [38] was also
implemented in JavaScript, therefore demonstrating the
limitations of the same-origin policy.

Site isolation. In response to transient execution attacks,
Chrome developed a new security measure called site
isolation [48], which forces each website, defined by the
tuple (Protocol, Host), to run in a specific process, not
shared with other websites. This prevents an attacker to
access the mapped memory space of another website and
mitigates the effect of some JavaScript-based transient
execution attacks by preventing the access—including
transient—to out of bound information. This feature was
deployed in Chrome 67, and is currently being deployed
in Firefox under the code name “Project Fission” [66]. At
the time of writing, it is deployed selectively on a subset
of the users of Firefox Nightly 84 [58]. It is likely to reach
the stable version of Firefox shortly.

COOP/COEP. Site isolation was extended with the in-
troduction of Cross-Origin Embedder Policy (COEP) and
Cross-Origin Opener Policy (COOP) [10]. COOP ensures
that a top-level window is isolated from other documents
by putting them in a different browsing context group.
For instance, if a website opens a pop-up whose origin
is different from the website, the browser under COOP
will put the pop-up in a separate process, similarly to
site isolation, and will prevent direct interaction with the
main document. COEP complements COOP by forcing
the browser to only load trusted resources. If a resource
has no explicit permission to be loaded, the browser will
do nothing if COEP is enabled. Both COOP and COEP
rely on policies defined through HTTP headers and they
were both added in Firefox 79 and Chrome 83 [18], [19].
When they are enabled on a document, they guarantee a
unique context group for the site and a safe loading of
trusted resources.

JIT mitigations. Other countermeasures were studied by
browser vendors to mitigate Spectre at JIT level. V8 devel-
opers have studied the impact of implementing retpolines
[57] at the JIT level [56]. However, they found that these
mitigations had serious impact on performance (a 2 or 3
times slowdown) and this countermeasure was not released.

Instead of preventing transient execution at the JIT
level, they prevent the transient execution to read secret
data [56], hence mitigating P4 instead of P3. They do so by
reserving a register, tracking whether code is executed in a
misspeculated branch. If so, they replace all loaded values
by the value of said register, hence destroying potential
out of bound information.

Conclusion. While these countermeasures were mostly
implemented to prevent transient execution attacks, espe-
cially Spectre-PHT [38], they do not prevent other timing

attacks, e.g., microarchitectural side channels or attacks
exploiting browser features as, by design, they are not
meant to mitigate P1, P2 or P3. As site isolation isolates
the process’ attack space, they also do not mitigate P4 for
transient execution attacks targeting cross-address-space
data, such as RIDL [61].

3.2. C2: Timers

The common prerequisite for timing attacks is access
to timers. By removing timers, or lowering their resolution,
most timing attacks would theoretically be mitigated. While
the needed resolution depends on the attack, most hardware
and transient attacks require high-resolution timers (P1),
around 10 to 100 ns. Removing such high-resolution timers
would theoretically mitigate these attacks.

However, even by reducing timers’ resolution, inter-
polation is still possible as long as attackers have access
to timers with a constant time free running operation. To
mitigate clock interpolation in browsers, adding a random
jitter to API timers was proposed [39], [53]. Adding jitter
to a measurement is equivalent to having clock periods
of different time (with an average around the real clock
period). This means that the interpolated time would vary
significantly between clock periods for the same event,
hence reducing the precision of clock interpolation.

Mitigations on performance.now(). After the first
JavaScript timing attack [45] in 2015, the W3C advised
that the resolution should be reduced to 5 µs to mitigate
timing attacks, and browsers followed [36], [46].

However, in 2017 Schwarz et al. [53] demonstrated
that it was still possible to recover high-resolution timers
with the clamped resolution by using interpolation. This
allowed an attacker to reimplement most timing attacks.
In particular, they presented a clock interpolation-based
timer with a resolution of 500 ns.

After the disclosure of Spectre [38], browser vendors
went to greater lengths to mitigate timing attacks. Figure 3
illustrates the changes that happened in a short time.
Mozilla first clamped performance.now() to a reso-
lution of 20 µs in Firefox 57.0.4 [64] then furthermore to
2ms in Firefox 59 [11]. Browser vendors then introduced
jitter to performance.now() in order to prevent clock
interpolation: Firefox 60 set the resolution to 1ms and
added a jitter of 1ms range [12], [25], while Chrome 64 set
the resolution to 100ms with a jitter of 100ms [40]. The
jitter being higher than the needed resolution for timing
attacks, it is no longer possible to use performance.
now() interpolation.

However, such drastic countermeasures also had an
impact on web development [13]. JavaScript-based anima-
tion or video games often require sub-millisecond timers,
which were no longer available. These countermeasures
were however temporary, until other countermeasures
were developed. Indeed, because of the security added
by site isolation, most browsers have re-allowed high-
resolution timers under certain conditions. Since Chrome
72, performance.now() has a resolution of 5 µs with
a jitter of 5 µs under site isolation (which is present by
default), whereas, since Firefox 79, it has a resolution
of 20 ± 20 µs without jitter, only when COOP/COEP is
activated [7], [14].



The implementation of jitter differs across browsers.
On Firefox 81, the jitter is computed using the SHA-256
hash function as follows [7]: the high-resolution timestamp
is clamped to the lowest millisecond. The browser then
uses SHA-256 on a tuple composed of the clamped time,
a context-dependent seed, and a secret seed. It returns a
random midpoint between the clamped time and the next
millisecond. Depending on whether the precise timestamp
is under or above this midpoint, the returned timestamp will
be the lowest or highest millisecond, uniformly distributing
clock edges between 0 and 2ms. On Chromium, the jittered
value is computed similarly, using murmur3 as the hash
function [2].

Jitter requires a methodology change to evaluate aux-
iliary timers: as such, the work of Schwarz et al. [53] is
not applicable anymore.

SharedArrayBuffer. Due to the powerful threat this
SharedArrayBuffer-based clocks create, Shared
ArrayBuffer were disabled by default after the publi-
cation of Spectre [38] in Firefox 57.0.4 and all Chrome
versions from 60. Once again, this measure is very re-
strictive for web developers and was only meant to be
temporary. With the introduction of COOP/COEP and
site isolation, browsers have re-enabled SharedArray
Buffer, claiming that access to a high-resolution timer
is not a major threat in a strict isolation context. For
instance, Chrome now supports SharedArrayBuffer
since version 68 claiming that site isolation [48] is a
sufficient defense, and as of Firefox 79, SharedArray
Buffer are available by default only under COOP/COEP.

Other timers. Many other timers exist in JavaScript. API
timers, such as Date.now() or Window.request
AnimationFrame(), are subject to the same jitter
as performance.now(). Furthermore, they have a
resolution equal or worse than performance.now(),
hence a higher measurement overhead. In the next sections
of this paper, we focus on the two most potent timers:
performance.now() and SharedArrayBuffer.

3.3. C3: Browser resources

When some timing leakage in the browser are not fixed
by a more general approach like C1, there is a need to
issue patches that specifically target them. For example, the
history sniffing attack detailed by Paul Stone in 2013 [55]
was only fixed in Firefox in 2020 by issuing repaints on
both visited and unvisited elements [5], [6]. Regarding
extension fingerprinting, the timing attacks detailed by
Sanchez-Rola et al. [49] and Van Goethem and Joosen [59]
were fixed by the Chromium team by changing how the
checks for web accessible resources were made to prevent
early-out exits [3], [4].

3.4. State of browser countermeasures

Figure 3 illustrates the evolution of browsers’ main
countermeasures and significant state-of-the-art attacks. P2
and P3 are not mitigated in browsers. Site isolation and
COOP/COEP are important security updates on browsers,
but do not mitigate hardware side-channel attacks and
transient execution attacks other than Spectre-PHT. Further-
more, V8 developers claim that software fixes for transient

execution attacks are “an unsustainable path” [56] as fixes
on P3 are too performance consuming, and fixes on P4
only apply to specific attacks. Mitigation for P3 must be
implemented at least at the OS level, if not at the hardware
level.

The common prerequisites of timing attacks is P1,
access to high resolution timers. This means that C2, timing
based countermeasures, are the only generic defense for
timing attacks, including future timing attacks.

Changes on timer-based countermeasures were moti-
vated by a compromise between security—less effective
timers means less threatening attacks—and usability. In-
deed, countermeasures had major implications on web
development and were meant to be temporary. Shared
ArrayBuffer are a powerful tool to build more complex
websites, and access to high-resolution timers is necessary
for some fields of web-design, such as animation or
monitoring performances. There is a clear trade-off be-
tween strengthening the timers for security, and weakening
then for easier development. However, we have found
no quantitative study of the impact of the changes of
values, especially regarding API timers resolution and jitter.
Finding when and why each countermeasure was deployed
often requires a deep dive in browser bug trackers.

With all the changes brought to countermeasures,
especially timing-based, it is not clear to what extent P1
is mitigated, i.e., to what extent browser are vulnerable
to most timing attacks, and whether an optimal value for
resolution and jitter exists. In the following sections, we
evaluate the efficiency of timing-based countermeasures.

4. Evaluation tools

In this section, we present our threat model, and
the properties of timers we are interested in: their res-
olution and measurement overhead. We focus on three
timers or variants: performance.now() interpolated,
performance.now() interpolated and amplified, and
SharedArrayBuffer.

4.1. Threat model

We evaluate two popular browsers that are Mozilla
Firefox and Google Chrome, letting aside Safari, Edge, or
Tor Browser. It should be noted that we study the desktop
version of these browsers, as all timing attacks we look at
were not performed on mobile devices.

JavaScript-based timing attacks can be used in several
threat models, each offering a different range of possibil-
ities. First party attacks, where a user visits a malicious
website, offer the most possibilities to the attacker. As
the attacker can setup COOP/COEP as she wishes, she
can freely use the unrestricted timers, based either on
performance.now() or SharedArrayBuffer. In
this model with Firefox 81, an attacker has access to
performance.now() with 20 µs resolution and no jit-
ter and to SharedArrayBuffer. However, the attacker
has to redirect users to her malicious website.

With third party attacks, a user visits a legitimate web-
site which has, e.g., a malicious advertisement controlled
by the attacker. This allows the JavaScript code of the ad to
be run on the user’s machine. As opposed to the first party
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Figure 3: Timeline of timing attacks and browser countermeasures. Items in italics are significant attacks that caused the
changes. Items preceded by [C1] are isolation-based countermeasures, and [C2] are timing-based countermeasures

model, the attacker does not control the top-level page. The
attacker therefore cannot set up COOP/COEP. Without
these flags, an attacker on Firefox 81 only has access
to performance.now() clamped and jittered at 1ms
and no access to SharedArrayBuffer. This model
presents a major threat surface, as it can be implemented
in massively visited websites, e.g., Twitter or Facebook.

On Chrome 84, timer-based countermeasures are inde-
pendent of COOP/COEP. This means that the first and third
party models offer the same timing possibilities, i.e., access
to SharedArrayBuffer and performance.now()
with a 5 µs resolution and jitter. However, Chrome 84
implements site isolation, which prevents certain transient
execution attacks.

4.2. Measurement tools

One challenge is that measuring properties of high-
resolution timers requires timers with an even higher
resolution and precision, which are not available in stan-
dard browser releases. To solve this issue, we built a
custom version of Firefox and Chromium that adds a new
JavaScript method we call performance.rdtsc(),
which executes the RDTSC instruction. The RDTSC
instruction reads a CPU timestamp counter and returns
it. As RDTSC is a cycle-accurate timer, we can use it to
evaluate real-world auxiliary timers. Specifically, we use it
to measure the resolution of both performance.now()
interpolation and SharedArrayBuffer, as well as their
measurement overhead.

We implemented our custom RDTSC builds in Firefox
81 and Chromium 84, built from sources on the same
system. We disabled debug flags to get a version as
close to the release version as possible. We modified
files of the performance API [24] to add a new
public method, performance.rdtsc(), which exe-
cutes the native RDTSC and returns its value. However,
RDTSC can be reordered by the out of order execution,
therefore two calls to performance.rdtsc() would
often be executed together, hence not timing an event.
For instance, two calls to performance.rdtsc()

with a call to performance.now() between would
return the same timing difference than two subsequent
calls to performance.rdtsc(). We fixed this by
adding memory fences (mfence instructions) in our
performance.rdtsc() method, before and after the
call to RDTSC. Memory fences force the CPU to compute
all operations preceding the fence before executing op-
erations succeeding the fence. This prevents out-of-order
execution of parts of code where the order of execution
is critical. Appendix A illustrates our implementation of
performance.rdtsc() for Firefox 81.

The mfence instructions add a constant overhead to
the returned timestamp. Overhead is also added by the
browser handling of the native code. On our system, the
total overhead is around 1000 cycles. In all our following
measurements, we measured the cycle difference between
two events, and then the cycle difference between two
subsequent performance.rdtsc(). This allows us to
estimate the overhead for the current state of the CPU,
depending on noise or core frequency. By removing this
overhead, we retrieve a more reliable estimation of the
event time in cycles.

4.3. Resolution

The resolution of a timer is the smallest value that it
can measure. The smaller the resolution, the more precise
the timer is. However, precisely evaluating the resolution
of a JavaScript timer is a challenge as this requires an
already precise timer.

performance.now() interpolation. To evaluate the
resolution of performance.now(), we evaluate the
maximum number of times we can increment a variable
between two clock edges. By dividing the clock edge
duration by this number of ticks, or measuring the time it
takes to increment, we learn the shortest event that we can
measure. However, because of the jitter, this value alone
is not representative. It can vary significantly between
measurements. Hence the importance of the standard
deviation of the resolution.



It is also important to note that the duration of a
“tick”, an increment, can vary from a browser version
to another. The main factor of this varying duration is
due to the implementation of clock interpolation: after
every increment, we check if performance.now()
timestamp has changed. As the computation of the pseudo-
random jitter often uses a hash function, it significantly
increases the performance.now() computation time.
Logically, the number of possible increments during the
same duration changes according to this computation time.

performance.now() amplification. As the resolution
is downgraded by pseudo-random values, we also study
the impact of amplification. By repeating the measurement,
an attacker can average the results and reduce the impact
of jitter. This amplification allows an attacker to recover
a higher resolution. As each repetition can increase the
resolution, granting an absolute resolution for an amplifi-
cation clock is illogical. The attacker has to compromise
between the resolution and the number of repetitions she
can afford.

In the following sections, we call error rate for cache
hit/miss discrimination, the ratio of false hits, i.e., misses
computed as hits, and false misses, i.e., hits computed as
misses over the total number of experiments. This error rate
allows to evaluate the efficiency of a timer in a real-world
cache timing attack. We assume that a timer with a 5%
error rate has a resolution sufficient to implement cache
timing attacks, hence a resolution of around 10−100 ns.
This rate will be used as a standard for amplification in
the following sections. We compute this rate by causing
ourselves cache hits by calling a variable repeatedly and
cache misses by calling a variable after evicting it from
the cache by browsing through a large array.

Amplifying the results by repeating measurements is,
however, not adapted to all attacks. Specifically, it only
works when the attacker controls the event that creates
the timing difference. For instance, in the case of a covert
channel, the attacker can recreate the conditions for the
same measurement several times. Some monitoring attacks
do not tolerate repetitions, as the attacker cannot recreate
the same conditions for the measurement. For instance,
RIDL [61] steals in-flight data, and cannot select which
data is in flight.

SharedArrayBuffer. For SharedArrayBuffer,
the resolution is the time of a shared increment. The
faster the increment, the higher the resolution. Other
factors can impact the resolution of the timer, such as
the computation time of reading a value from the array or
potential concurrent accesses. Multithreading is handled
differently in different browsers and this can be a potential
source of randomness on the timestamp.

4.4. Measurement overhead

While the resolution indicates how precise a timer
can be, an overhead is always incurred during a time
measurement. In our study, we consider the following
ones:

• Setting up a timer and handling it (starting it, stopping
it, retrieving the results) always add an overhead. For
performance.now(), it is very low as we rely
on a built-in API in the browser. For SharedArray

Buffer, it is also comparatively low as starting a
worker is very fast and communication with it is
immediate.

• The repetition of ticks in timer interpolation (see
Figure 1) is an overhead. Indeed, even if we measure
the time of a short event, we still need to wait for
the next clock edge of the timer that we rely on to
retrieve the results. This is why, for performance.
now() interpolation, the resolution can be very low
but the overhead can be large as we are bound by
performance.now() resolution.

To evaluate the measurement overhead of a given
method, we use our custom performance.rdtsc()
to measure the time difference between the start and the
end of the measurement, without any event in between. A
high measurement overhead does not necessarily prevent
the attack but it plays a major role in the attack severity.

Ideal bit rate. A covert channel created with a high
measurement overhead will yield a lower bit rate than
one with a low measurement overhead, i.e., the time to
receive one bit will be higher with a high measurement
overhead. Assuming each measure of time corresponds to
a bit of information, and that the time the operation takes
top is insignificant with respect to the overhead toh, we
can define the ideal bit rate of such a timer to 1

toh
bit/s.

Eviction set. Measurement time, and therefore measure-
ment overhead, also impacts other attacks. For instance,
building an eviction set in JavaScript [63], has a complexity
in time measurements of O(C) where C is the size of the
cache. Standard L3 caches have a size of several megabytes.
In practice, on our system, an attacker must measure time
around 100 000 times in order to build an eviction set. We
use the computation of an eviction set as a standard as
it is a critical step of attacks based on Prime+Probe. A
high measurement time therefore leads to huge eviction
set computation times, which may not be available to an
attacker in a real-world scenario where a user only spends
a few seconds or minutes on a web page.

5. Results

In this section, we present the results of our longitudinal
studies of performance.now() and SharedArray
Buffer timers over many browser versions, as well as the
impact of changes in countermeasures on state-of-the-art
attacks. Table 2 presents the results of our comparative
study.

5.1. Experimental setup

We ran measurements on a machine with an Intel
CPU i5-8365U (Whiskey Lake generation) with 1.60GHz
frequency, under Fedora 31.

We performed experiments using every major release
versions of Firefox from 53 (2017) to 80 (2020) and
Chrome 48 (2016) to 84 (2020)4. We used Selenium
WebDriver [8] and Python to automate tests. New versions
of said browsers can easily be included in the test routine

4. Some releases of Chrome (versions 65 to 6) were unavailable on our
system. We replaced them by the equivalent Chromium version. To our
knowledge, the timer implementations are the same on both browsers.



Table 2: Comparison of timers’ resolution, measurement overhead and ideal bit rate for an error rate of 5%. We used a
frequency of 1.60GHz and the resolution is displayed in ns. We can observe that the SharedArrayBuffer-based
timer is by far the most efficient, as they offer a better resolution and a lower measurement overhead than timers based
on performance.now() on all browsers. Timers based on performance.now() clocks are still highly effective
in Chrome 84 and Firefox 81 with COOP/COEP.

Browser Timer Resolution
[cycles]

Converted
resolution

Measurement
overhead [cycles]

Ideal bit rate
[bit/s]

Chrome 84 SharedArrayBuffer 20 10ns 40 1× 108

performance.now() interpolation 3 100-1000 100ns 7.2× 104 22× 104

Firefox 81
SharedArrayBuffer 20 10ns 42 1× 108

performance.now() interpolation 100-1000 100ns 2.9× 107 60
Interpolation with COOP/COEP 100-1000 100ns 7× 104 22× 104

Table 3: Duration of a tick, using
performance.rdtsc().

Browser Average tick
duration [cycles]

Standard Deviation
[cycles]

Firefox 81 200 10
Unjittered Firefox 81 100 9
Chrome 84 150 9

to see the evolution of timers without a deep dive in
documentation and source code. Our scripts access test
pages hosted on a local server, each page containing
our JavaScript benchmark code. Our scripts also handle
browser evolution, e.g., the different flags required by the
use of SharedArrayBuffer, or the eventual activation
of COOP/COEP.

5.2. Longitudinal study of performance.
now() interpolation

5.2.1. Simple interpolation
Resolution. We seek to measure the resolution of the
performance.now() method when interpolated. Two
factors influence this resolution: (1) the duration of a tick,
and (2) the jitter.

The shorter the duration of a tick, the higher the
resolution. Table 3 illustrates the duration of a tick on
different browsers and versions. It is important to note that
while the increment part of the tick has a relatively steady
computation time through browser versions, the computa-
tion time of the call to performance.now() varies a
lot depending on the version. For instance, on Firefox 81,
a call lasts around 200 performance.rdtsc() cycles,
while it only takes 100 cycles on an unjittered version. At
this scale, the jitter is indeed a time-consuming operation
as the browser uses a hash function to compute a random
midpoint.

To understand the impact of resolution and jitter on
measurements, we measure the number of ticks between
two clock edges. This is equivalent to measuring no event
with a performance.now() interpolation-based clock.
Without any jitter, the number of ticks is always the same.
Since the standard deviation is low, an accurate timing can
be retrieved [53]. With jitter, the story is obviously different.
If the resolution of performance.now() is low, the
time between two clock edges increases, so the number of

4. COOP/COEP has no impact on timers in Chrome 84.

Table 4: Comparison of the average number of ticks per
browser. The duration of a tick can vary accordingly to
the browser or the presence of jitter.

Browser
Average
number
of ticks

Standard
Deviation

Announced
resolution Jitter

Firefox 81-latest
+ COOP/COEP 300 40 20 µs

Firefox 60-latest5 3310 1510 1ms
Firefox 41-576 70 10 5 µs
Chrome 72 and later 12 7 5 µs
Chrome 64-71 400 200 100 µs
Chrome 64 and former 10 2.5 20 µs

ticks increases. If the jitter is high, the number of ticks will
be spread on a wide range of values between measurements,
and therefore the standard deviation increases. Table 4
illustrates this evolution by showing statistics about the
average number of ticks between two clock edges. As
a reminder, a tick is composed of an increment as well
as a call to performance.now(). The results were
computed using 100 000 samples. We see that jittered
versions often have a high variance to average ratio, e.g.,
on Firefox 81 without COOP/COEP, the standard deviation
is half of the average.

Figure 4a and Figure 4b illustrate the variation of the
number of ticks in a single clock period for Firefox 81
and Chrome 84 respectively. The data follows a triangle
distribution, with the top value at around 3300 and 12
ticks respectively. A precise timestamp can be clamped
to a certain value if the timestamp is smaller than the
clamped value but higher than the random midpoint, or if
the timestamp is higher than the clamped value but lower
than the random midpoint. As both midpoints are computed
following a uniform distribution, the result of the sum of
these two distributions is a triangle distribution. On the
contrary, as can be seen on Figure 4c, the behavior of an
unjittered Firefox is very different. The distribution of ticks
in a clock period is grouped between 280 and 320 and does
not follow a triangle distribution. The difference in the
number of ticks stems from the different base resolutions
and jitters. Knowing the distribution of the number of ticks
in a single clock period means that an attacker can gather
more information from a single measurement.

The resolution for the different versions vary drastically
between browsers. Figure 5 illustrates the timings for

5. Without COOP/COEP for Firefox 81 and later.
6. Versions 58 and 59 experienced many timer changes and do not

appear here.
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(c) Firefox 81 with COOP/COEP (no jitter).

Figure 4: Distribution of number of ticks in a single clock
edge.

cache misses and cache hits by using performance.
now() interpolation on Firefox 81 with COOP/COEP
and Chrome 84. Distributions must be differentiated in
order to implement cache attacks. Note that, contrary to
what we expect, hit timings are higher to miss timings
on this graph. This is because performance.now()
interpolation measures the time between the end of the
event and the end of the clock edge. This means that a
long event will yield a short interpolated time, whereas a
quick event will yield a long interpolated time. The lack of
jitter on Firefox has an impact on the histogram, where the
difference between cache hits and cache misses is clearer.

On Firefox 81 without COOP/COEP, an attacker has
a 30% error rate on distinguishing cache hits from cache
misses when targeting a sub-100 ns resolution. On Chrome
84, regardless of COOP/COEP, the error rate stands at 20%.
This makes for a highly unreliable clock, and drastically
hinders the development of attacks. On Firefox 81 with
COOP/COEP, the lack of jitter drops this error rate to only
11%.

The lower the error rate, the more threatening timing
attacks with this timer are. This means that, with inter-
polation alone, timers based on performance.now()
on Firefox 81 with COOP/COEP offer the best timer in
term of resolution, as they allow to implement cache-based
timing attacks with a relatively low error rate. Error rates
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Figure 5: Histogram for cache hits and cache misses.

of Chrome 84 and Firefox 81 without COOP/COEP are
too error-prone to implement attacks that require high
precision.

Measurement overhead. We now evaluate the measure-
ment overhead on Firefox 81 and Chrome 84. We use our
custom performance.rdtsc() to retrieve the times-
tamp before and after the measurement of an empty event
with performance.now() interpolated. We found that,
on Firefox 81 without COOP/COEP, the measurement over-
head averages around 1.8 million cycles. On our 1.60GHz
CPU, this represents around 1.1ms. This is coherent with
the announced resolution, 1ms, as the measurement always
takes at least this time between two clock edges. On
Chrome 84, a measurement using interpolation takes 9,000
cycles, corresponding to 5.5 µs with our average frequency.
On Firefox 81 with COOP/COEP, a measurement using
interpolation takes 35,000 cycles, averaging to 21 µs on our
system. The slight difference may come from the potential
change in CPU frequency under a lot of calculations and
noise.

With interpolation alone, Chrome 84 has the shorter
measurement overhead, which allows to implement attacks
that run faster. Namely, a cache covert channel built
with this timer could ideally retrieve a resolution of
180 kbit/s, against 50 kbit/s for Firefox with COOP/
COEP and 900 bit/s for Firefox without COOP/COEP.
However, the ideal bit rate does not take into account the
different error rates between browsers.

Conclusion. Although Chrome 84 offers the best base
resolution with performance.now() interpolation, the
jitter causes a high error rate for high-resolution attacks.
This error rate would slow, if not prevent, the implemen-
tation of attacks using interpolation alone. Due to the lack
of jitter, Firefox 81, with COOP/COEP enabled, offers the
lowest error rate with interpolation. It could be used to
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Figure 6: Hit / miss error rate in function of repetitions,
using performance.now() interpolation on Firefox 81
without COOP/COEP and Chrome 84

built error-tolerant cache attacks, such as a covert channel.
Firefox 81 without COOP/COEP has a high error rate
(30%) and a high measurement time, rendering it inefficient
for timing atttacks.

With interpolation alone, Firefox 81 with COOP/COEP
is the only browser where an attacker can build clocks
based on performance.now() that can efficiently run
timing attacks.

5.2.2. Interpolation and amplification
The jitter being longer than most of the events we wish

to time, it is not possible to simply use clock interpolation
to retrieve a high resolution. To get a more accurate timer,
an attacker therefore needs to reduce the impact of the
pseudo-random jitter. On both Chrome and Firefox, the
jitter is deterministically defined by computing a random
midpoint between the highest and lowest clamped values.
However, the time of a jittered clock edge follows a triangle
distribution around the precise timing value. This means
that each measurement has a slight tendency towards the
real value. By repeating the measurement several times,
an attacker can, therefore, achieve a higher precision.

Resolution. To evaluate the impact of amplification on
the resolution, we repeated the measurements and com-
puted each time the average error rate on cache hit/miss
discrimination. Figure 6 illustrates the results for Firefox
81 without COOP/COEP and Chrome 84. The error rate
follows a logarithmic decrease with repetitions for both
browsers. An attacker can reach a 5% error rate by
repeating the measurements 15 times on Firefox 81 without
COOP/COEP and 8 times for Chrome 84. On Firefox 81
with COOP, a mere 2 repetitions grant a 4% error rate.
Comparatively, on an older version of Chrome, namely
version 71, an attacker needed 12 repetitions in order to
reach the 5% error rate.

Measurement overhead. A single measurement without
amplification takes at least the duration of a clock edge.
That is, on average, 1ms for Firefox 81 and 5 µs for
Chrome 84. In the best scenario, repeating the measurement
n times will increase the measurement time by n.

Specifically, repeating the measurement 15 times on
Firefox 81 without COOP/COEP takes 29 million cycles
on average. This represents a measurement overhead of
18ms on our 1.60GHz CPU. This means that building a
covert channel using this timer as a receiver yields, at best,
an ideal bit rate of 60 bit/s.

On Chrome 84, repeating the measurement 8
times grant a measurement overhead of 72 000 custom
performance.rdtsc() cycles, or around 45 µs. This
would grant an ideal bit rate of 22 kbit/s.

On Firefox 81 with COOP/COEP, with amplifica-
tion, the measurement time would be 70 000 custom
performance.rdtsc() cycles, granting as well an
ideal bit rate of 22 kbit/s.

Conclusion. The introduction of non timer-based counter-
measures, specifically site isolation for Chrome and COOP/
COEP for Firefox7 have led browser vendors to take a step
backward on timer-based countermeasures. Lowering the
resolution and the jitter has an impact on the measurement
overhead, hence on real-world attack time. Starting from
Chrome 72, the resolution of performance.now() has
been set to 5 µs with jitter. Starting from Firefox 79, when
COOP/COEP are set, the resolution of performance.
now() is set to 20 µs without jitter.

A cache covert channel based on performance.
now() amplification on Firefox 81 with COOP/COEP
has an ideal bit rate 360 times higher than without COOP/
COEP. Similarly, an attacker with COOP/COEP can build
an eviction set in around a few seconds, where an attacker
without COOP/COEP would need several minutes. The
same goes with Chrome: on version 71, with a resolution
of 100 µs, we obtain, with amplification, an ideal bit rate
of 800 bit/s, 30 times lower than with the new Chrome 84
timer values. An attacker using Chrome 84 can build an
eviction set in a matter of seconds, as opposed to several
hundred seconds for Chrome 71.

The efficiency of the jitter is also highlighted by these
results: between Chrome 84, with jitter, and Firefox 81 with
COOP/COEP, without jitter, the measurement overhead is
similar, when Chrome offers a better base resolution.

These changes have a massive impact on a browser-
based threat model, where a script running with high
performance for several minutes is highly suspicious, and
can be detected by browsers. In a first-party scenario, an
attacker can easily setup COOP/COEP and use a powerful
timer granted by this change of resolution and timer. For
both browsers, the impact of this change in resolution is
a massive increase in the threat of timing attacks, as it
means that P1 is less mitigated than on older versions.
Changing the timer resolution does not prevent attacks,
but impacts massively the time needed to execute them,
which is an important factor in web security, as the user
has to stay on the malicious web page for the duration of
the attack. Setting a lower resolution and lower jitter has
a double impact on the measurement overhead: as each
clock edge is shorter, each measurement is faster. The
attacker therefore needs fewer repetitions to eliminate the
jitter, furthermore accelerating attacks.

5.3. Longitudinal study of SharedArray
Buffer-based clocks

Resolution. The resolution of SharedArrayBuffer
only depends on the computation time of an increment of
the shared value. The smaller the value, the higher the res-
olution. We used performance.rdtsc() before and

7. Implementations of site isolation for firefox are developed. COOP/
COEP are implemented in Chrome but have no impact on timers.



after incrementing the array buffer and tested two different
types of increments: a simple increment (value++) and
the built-in method Atomics.add [28]. The Atomics
API offers methods to safely use shared memory and
handle conflicts.

We observed that a simple increment takes in the order
of 20 custom cycles on both Chrome 84 and Firefox 81
whereas using Atomics takes 100. Logically, handling
concurrent accesses introduces an overhead. We also noted
that the first increment is slower, by an order of magnitude,
probably from a cache impact. As the sub-thread systemati-
cally increases the same value, we excluded it and focused
on the following values. SharedArrayBuffer offers
a resolution in the order of 20 CPU cycles, or 10 ns on
our CPU.

Measurement overhead. The measurement overhead
for SharedArrayBuffer is roughly the time it
takes to read a value in the shared array twice: be-
fore and after the event. We again used our custom
performance.rdtsc() to measure this time, and
we tested two methods: standard array access and
Atomics.load. On Firefox 81, a standard access lasts
in the order of 42 custom cycles, opposed to 160 with
Atomics API. As the lowest measurement overhead is
preferable, we used the standard access. The measure-
ment overhead on Chrome 84 with the standard access
is 40 performance.rdtsc() cycles, or 20 ns on a
1.60GHz CPU. It is similar on Firefox 81.

Conclusions. SharedArrayBuffer have been dis-
abled by default in Chrome 60 and Firefox 57.0.4 to
mitigate Spectre. With the introduction of mitigations to
transient execution attacks, they have been reimplemented.
They are available by default in Firefox 79 with COOP/
COEP, and by default in Chrome 68.

SharedArrayBuffer based timers are, by far, the
most powerful timer available in browsers. Table 2 illus-
trates the resolution and measurement time for Shared
ArrayBuffer-based clocks. They offer a resolution of
20 cycles and a measurement overhead of 40 cycles,
equivalent to 10 ns and 20 ns respectively on a 1.60GHz
CPU. The offered resolution is sufficient to implement all
known timing attacks. In addition, they have a very low
measurement overhead and do not need amplification. An
attacker using SharedArrayBuffer to build a covert
channel can achieve an ideal bit rate of 50Mbit/ sec on
both browsers. This is 800 000 times higher than with
performance.now() on Firefox 81 without COOP/
COEP, and 2000 times higher than Chrome 84 and Firefox
81 with COOP/COEP.

An attacker could theoretically create an eviction set in
less tenth of milliseconds by using this method. However,
the algorithm required to create an eviction set have other
sources of heavy computation, and still ran within a few
hundred milliseconds on our system.

Free access to such a powerful timer shows that P1 is
not mitigated. Excluding Spectre-PHT, most of state-of-
the-art attacks are theoretically possible under the current
state of Chrome and Firefox, as P1, P2 and P3 are not
mitigated, and P4 only partially mitigated. Other transient
execution attacks, such as RIDL [61] or ret2spec [43]
are not prevented by COOP/COEP or site isolation, and
are still implementable under certain conditions as the

shared system resources are still accessible. In Firefox,
where SharedArrayBuffer are restricted to sites with
COOP/COEP, an attacker can still use them in a first party
scenario. Logically, countermeasures on performance.
now() or other timers are secondary when Shared
ArrayBuffer are available, because they allow the
creation of way more potent timers.

6. Discussion

In this section, we discuss the current state of timers
in browsers and the challenges surrounding them.

Usability vs security and the lack of proper mitigations.
In Section 3, we have seen that the behavior of API timers
like performance.now() has varied over the years
in response to newly discovered attacks. Timing-based
countermeasures (C2) have been widely implemented, but
to various degrees of strength. On one hand, browser
vendors decreased timer’s resolution and added jitter to
provide a more secure environment for their users. But on
the other hand, their decisions appear arbitrary in retrospect
as changes to timers were made without any concrete
evidence of their effectiveness. For example, despite the
study of Oren et al. in 2015 [45], it was not until 2018 that
we saw the first implementation of jitter in web browsers.
In that time frame, the decrease in timer resolution could
simply be bypassed through interpolation [53]. Moreover,
since some genuine applications are directly impacted by
the lack of real-time precision provided by the affected
timers [13], each browser vendor has tried to balance
security with usability: Chrome never went above 100 µs,
Firefox hovered around the 1ms mark and got down
recently to 20 µs while the Tor Browser has kept a 100ms
resolution since April 2015. The same goes for Shared
ArrayBuffer: they are enabled by default on Chrome,
Edge and Opera, enabled under COOP/COEP for Firefox,
and disabled on Safari and Tor.

This lack of consensus between vendors highlights
how uncertain the industry is with the provided fixes. The
results provided in this paper show that the current timer-
based countermeasures (C2) are a good first step towards
protecting users but they still fall short of fully protecting
them against a large range of timing attacks, as P1 is a
shared prerequisites between most of the timing attacks,
and allegedly future timing attacks.

An alternative that could be considered by vendors
is to put access to a high-resolution timer, based on
performance.now() or SharedArrayBuffer, be-
hind a permission. This way, when a developer needs it for
an application or a game, she would need to ask the user
for an explicit permission. This would prevent stealthy
usage of API timers for timing attacks and all vendors
could adopt the exact same very low resolution by default
as it would not break pages not needing it.

The false sense of security created by resource isolation.
Recent trends on the development of the web as a platform
have focused a lot on controlling what is running on a
web page. Isolation-based countermeasures (C1) are at
the core of browser security. Mechanisms like SRI [22],
CORP [20], COOP/COEP [10], site isolation [48] or even
a proposal for better cookies [65] are all pushing the web
forward in strengthening security. Yet, when it comes to



timing attacks, all these new barriers create a false sense
of security even though some attacks are definitely now
much harder to pull off than before. By design, these
countermeasures are not meant to mitigate P2 nor P3, and
only a subset of P4. They are a great step forward in term
of security, but are not sufficient alone to mitigate the
vast majority of timing attacks. While they greatly limit
the possibility of a third-party attack when everything is
set up properly on a web page, an attacker can still host
her own malicious domain and conduct the attack from
there. Moreover, the recent increase of timer resolution
coupled with the reactivation of SharedArrayBuffer
represents a massive step back in security where some
attacks can be run in similar conditions to the ones in
2015. Our study highlights the dangers of coming back to
such a state, and we hope browser vendors will recognize
their mistakes by considering stronger mitigations to P1.

The need to mitigate timing attacks at the OS or hard-
ware level. Since timers can represent such an important
threat to the security in a web browser, one can wonder if it
would be possible to have a browser without timers. One
approach is to try and make the browser deterministic
as prototyped by Cao et al. with DeterFox [17]. By
transforming a physical clock into a logical one, they
change the behavior of known timers so that they do not
return the time a request takes but return the number of
operations that are being executed. While promising, this
approach presents several shortcomings. First, they have
to patch each known clock individually to instill this new
behavior. A deep re-engineering of the browser would
have to be made to possibly cover all implicit clocks. The
second problem is that a logical clock loses all its meaning
in the context of a real-time application. Some programs
need to access the actual physical clock of the system to
function properly and having a deterministic clock would
present a lot of hurdles for developers.

In the end, we believe that everything running in a web
browser has the potential to be a timer. This means that
fully mitigating P1 seems out of reach. While browsers
in 1995 mainly rendered static pages, the web has kept
growing since then and it is now this rich and dynamic
platform that can not only render pages but it is also the
home of real-time communications and virtual reality, to
name but a few. While some alternatives like putting access
to high-resolution timers behind a permission can improve
security, we simply have to learn to live with timers as
they are such an intricate but integral part of the web.

As a consequence, mitigating timing attacks at the
browser level is not the only solution as we can de-
velop solutions at both the OS and hardware level to
provide stronger security against such threats, particularly
mitigating P2 and P3. Software mitigations to transient
execution still have, at this point in time, a high cost
in performance. Browser vendors claim that mitigation
must come from a lower level than software [56] as
hardware and transient execution attacks originate from
micro-architectural optimizations.

7. Related Work

Other leads have been studied to try and prevent
JavaScript based timing attacks.

Kohlbrenner et al. [39] presented Fuzzyfox, a Firefox
fork where timer resolution is degraded and jittered. This
includes performance.now() as well as other existing
JavaScript auxiliary timers, such as Window.request
AnimationFrame(). Fuzzing techniques are now im-
plemented in most browsers, and include auxiliary clocks.

Schwarz et al. [52] have developed JavaScript Zero,
a dynamic permission model. It aims at reducing threats
by controlling which JavaScript features are available in a
specific context. The authors claim fixing most JavaScript
timing attacks (pre-Spectre) as well as any JavaScript
based 0-days. They implemented their model in a modified
version of Google Chrome, with only a small overhead.
To prevent timing attacks, in their most secure settings,
they reduce performance.now() resolution to 100ms
with jitter. They also replace SharedArrayBuffer by
a single threaded polyfill, mitigating the auxiliary clock
threat. These measures are efficient against timing attacks,
however they do not go in the current browser’s direction.
Indeed, these restrictions are particularly constraining for
web developers. For instance, it is impossible to implement
60Hz animations with such a resolution.

Cao et al. [17] proposed an other approach to mitigate
timing attacks. They introduce DeterFox, a fork of Firefox
which implements deterministic computing. This means
that a potential attacker will always obtain the same timing
for an event.

8. Conclusion

We have studied the evolution in the last years
and the current state of JavaScript-based timers and
timing attacks for Chrome and Firefox, evaluating the
resolution and measurement overhead for the two most
efficient timers: performance.now() and Shared
ArrayBuffer. Timer-based countermeasures like clamp-
ing the resolution and adding jitter do not prevent attacks,
but increase the time needed to exploit these attacks.
Unlike in native environment, exploitation time is an
important factor in web-based attacks, where the victim
may not stay on the same web page for more than a
few seconds or minutes. Unfortunately, the current trend
of browser vendors undermining previous timer-based
countermeasures by re-enabling SharedArrayBuffer
and increasing the resolution to improve usability re-
opens the door to many practical timing attacks, that
were thought to be mitigated years ago. For example, the
re-introduction of SharedArrayBuffer on Chrome
brought a 2 000-fold increase in covert channel capacity,
compared to performance.now() alone. This is even
more dramatic on Firefox, where the increase is 800 000-
fold. Powerful countermeasures such as site isolation and
COOP/COEP only prevent a sub-class transient execution
attacks, thus browsers are currently vulnerable to other
transient execution attacks, as well as a large range of
timing attacks, with a large threat surface.

Availability

The main purpose of this work is to provide an
overview of the evolution of JavaScript’s timers over
the years, allowing the community to start informed



discussions in this area and motivate further research.
To ensure the repeatability of our findings, all developed
code and data artifacts are available on https://github.com/
thomasrokicki/in-search-of-lost-time. This includes all the
tests that we ran for this study, the different patches for
Chrome and Firefox along with the complete data that
form the basis of our results.
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Appendix A.
Custom RDTSC implementation

We modified the following files in order to implement
performance.rdtsc():

A.1. Firefox 81

mozilla-central/dom/performance/Performance.cpp

s t d : : u i n t 6 4 t Pe r fo rmance : : Rd t sc ( ) {
unsigned i n t lo , h i ;

asm v o l a t i l e ( ” mfence ” ) ;
asm v o l a t i l e ( ” r d t s c ” : ”=a

” ( l o ) , ”=d ” ( h i ) ) ;
asm v o l a t i l e ( ” mfence ” ) ;

re turn ( ( s t d : : u i n t 6 4 t ) h i << 32) |
l o ;

}

mozilla-central/dom/performance/Performance.h

s t d : : u i n t 6 4 t Rd t sc ( ) ;

mozilla-central/dom/webidl/Performance.webidl

t y p e d e f double u i n t 6 4 t ;
u i n t 6 4 t r d t s c ( ) ;

A.2. Chromium 84

chromium/src/third party/blink/
renderer/core/timing/performance.cc

s t d : : u i n t 6 4 t Pe r fo rmance : : r d t s c ( ) {
unsigned i n t lo , h i ;

asm v o l a t i l e ( ” mfence ” ) ;
asm v o l a t i l e ( ” r d t s c ” : ”=a

” ( l o ) , ”=d ” ( h i ) ) ;
asm v o l a t i l e ( ” mfence ” ) ;

re turn ( ( s t d : : u i n t 6 4 t ) h i << 32) |
l o ;

}

chromium/src/third party/blink/
renderer/core/timing/performance.h

s t d : : u i n t 6 4 t r d t s c ( ) ;

chromium/src/third party/blink/
renderer/core/timing/dom high res time stamp.idl

t y p e d e f double u i n t 6 4 t ;

chromium/src/third party/blink/
renderer/core/timing/performance.idl

u i n t 6 4 t r d t s c ( ) ;
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