
Port Contention Goes Portable: Port Contention Side Channels
in Web Browsers

Thomas Rokicki
Univ Rennes, CNRS, IRISA

Rennes, France

Clémentine Maurice
Univ Lille, CNRS, Inria

Lille, France

Marina Botvinnik
Ben-Gurion University of the Negev

Be’er Sheva, Israël

Yossi Oren
Ben-Gurion University of the Negev

Be’er Sheva, Israël

Abstract
Microarchitectural side-channel attacks can derive secrets from the
execution of vulnerable programs. Their implementation in web
browsers represents a considerable extension of their attack surface,
as a user simply browsing a malicious website, or even a malicious
third-party advertisement in a benign cross-origin isolated website,
can be a victim.

In this paper, we present the first port contention side channel
running entirely in a web browser, despite a highly challenging en-
vironment. Our attack can be used to build a cross-browser covert
channel with a bit rate of 200 bit/s, one order of magnitude above
the state of the art, and has a spatial resolution of 1024 native instruc-
tions in a side-channel attack, a performance on-par with Prime+
Probe attacks. We provide a framework to evaluate the port con-
tention caused by WebAssembly instructions on Intel processors,
allowing to increase the portability of port contention side channels.
We conclude from our work that port contention attacks are not
only fast, they are also less susceptible to noise than cache attacks,
and are immune to countermeasures implemented in browsers as
well as most side channel countermeasures, which target the cache
in their vast majority.

CCS Concepts
• Security and privacy→Web application security; Side-channel
analysis and countermeasures.

Keywords
Side Channel; CPU Port Contention; JavaScript; WebAssembly

ACM Reference Format:
Thomas Rokicki, Clémentine Maurice, Marina Botvinnik, and Yossi Oren.
2022. Port Contention Goes Portable: Port Contention Side Channels in Web
Browsers. In Proceedings of the 2022 ACM Asia Conference on Computer and
Communications Security (ASIA CCS ’22), May 30–June 3, 2022, Nagasaki,
Japan. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3488932.
3517411

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan.
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9140-5/22/05. . . $15.00
https://doi.org/10.1145/3488932.3517411

1 Introduction
Microarchitectural features such as SMT, out-of-order execution,
caches and branch prediction units are designed with the goal of
increasing performance. They can, however, be exploited by attack-
ers to derive secrets from the execution of vulnerable programs,
and to enable covert communications between processes. As these
microarchitectural attacks gain traction in the security community,
their attack surface increases two-fold: 1) more and more compo-
nents are found vulnerable to side channels, and 2) side-channel
attacks, which were originally implemented in native code, are
being ported to web browsers, expanding the attacker model and
crucially increasing the number of potential victims.

While cache side-channel attacks remain the microarchitectural
attacks most studied in the literature [23, 24, 27, 43], port contention
attacks have also been shown to be a potential attack vector in a
technique introduced in 2018 by Aldaya et al. [3], named PortSmash.
This attack on Intel CPUs is based on port contention, where CPU
ports act as a bottleneck in the execution pipeline. By sharing ports
with the victim, the attacker can exploit timing differences caused
by the contention of different instructions. PortSmash has a high
temporal resolution and can be used, like its counterparts on the
cache, to perform side-channel attacks on cryptographic libraries.
While port contention attacks restrict the attacker by requiring that
it shares the core it executes on with its victim, they are inherently
stealthier than attacks on the memory subsystem. They are also
immune to most hardware and system countermeasures which, in
their vast majority, target the cache [9, 19, 22, 28, 32, 44].

Web browser-based timing attacks, and in particular microarchi-
tectural attacks, are a real threat to security. Indeed, previous work
has shown that it is possible to derandomize ASLR completely from
JavaScript [15], to spill secrets via transient execution [18], and to
craft covert channels of the same order of magnitude as native code
approaches: 320 kbit/s for the nominal approach of Prime+Probe
in the browser, 8 kbit/s with a receiver in a virtual machine [27],
and 200 bit/s when using Chrome’s I/O event loop [40]. However,
browser vendors have introduced countermeasures against these
attacks, targeting high-resolution timers [30, 33] and introducing
resource isolation mechanisms [29]. In practice, this entirely miti-
gated the event loop side channel, and severely hindered Prime+
Probe1. Covert channels have been developed after the introduction
of these countermeasures, but with significantly lower bit rate. To

1Although, to the best of our knowledge, no recent implementation of Prime+Probe
has been evaluated.

https://doi.org/10.1145/3488932.3517411
https://doi.org/10.1145/3488932.3517411
https://doi.org/10.1145/3488932.3517411

Table 1: Comparison of covert channels in web browsers.

Covert channel Bandwidth
Runs with
current

mitigations
Setup

CPU throttling [31] 0.2 bit/s -
Disk contention [38] 5 bit/s -
RIDL (Evict+Reload) [39] 8 bit/s -
DRAM [33] 11 bit/s -
Hardware interrupts [21] 25 bit/s cross-browser
Event loop [40] 200 bit/s cross-browser
Prime+Probe [27] 320 kbit/s2
Prime+Probe [27] 8 kbit/s1 cross-VM
Port contention [our work] 200 bit/s cross-browser
Port contention [our work] 80 bit/s cross-VM

the best of our knowledge, the highest bit rate demonstrated after
the countermeasures is 25 bit/s.

When compared to cache attacks such as Prime+Probe, native
port contention attacks offer better speed and spatial accuracy, do
not require a complex cache profiling step, are more resistant to
noise, and, most significantly, can bypass cache-centric counter-
measures. Mounting a port contention attack in a browser setting
would therefore deliver a real advantage to attackers. Performing
such an attack, however, is far from trivial. The basic step of a
Prime+Probe cache attack is sequential access to user-controlled
memory. It has been shown that even high-level primitives, such
as substring searches, can provide this functionality [35]. Port con-
tention, on the other hand, requires an attacker process which is
co-located with the victim on the same processor core and executes
assembly language instructions carefully chosen to conflict with the
victim’s instructions. This is highly challenging in a web browser
environment:
C1 : In this setting, the attacker’s code is written in a highly-

abstracted language which is translated into machine code
by a just-in-time compiler;

C2 : The attacker has no control over the physical core selected by
the browser to execute the attack code;

C3 : Finally, web-based timers have a lower resolution than native
hardware-based timers, increasing the attacker’s measure-
ment noise.

Our work tackles these challenges, and asks the following ques-
tions: Can port contention attacks be mounted from within the
browser? What are the implications of this new attack vector?

Contributions. The main contributions are as follows:
• We show that port contention can be ported to web browsers
via WebAssembly, despite the strong requirements of this
attack and the abstraction of the WebAssembly language.
This greatly increases the attack surface that is due to port
contention (Section 3).

• We propose an automated framework to find which Web-
Assembly instructions can cause port contention on a given
Intel processor (Section 4).

• We demonstrate a side-channel attack on a synthetic exam-
ple, to evaluate the resolution of our port contention attack.

2This work was presented before heavy countermeasures against timing attacks.
The covert channel is theoretically still implementable, but with a heavily degraded
bandwidth.

Core 1 Decoder Core 2fetch fetch

𝜇ops

scheduler

Execution engine

P0 P1 P2 P3 P4 P5 P6 P7

𝜇op

𝜇op

𝜇op

𝜇op

𝜇op

𝜇op

𝜇op

𝜇op

𝜇op

𝜇op

𝜇op

𝜇op

𝜇op

𝜇op

𝜇op

𝜇op

𝜇op

𝜇op

𝜇op

𝜇op

𝜇op

𝜇op

𝜇op

𝜇op

𝜇op

𝜇op

𝜇op

𝜇op

Figure 1: Illustration of the execution pipeline of instruc-
tions inside a physical core on an Intel CPU.

We show that our attack has a spatial resolution of 1024
instructions with a single trace, equivalent to the best mi-
croarchitectural attacks in the browser (Section 5).

• We build a covert channel using port contention. With a
sender running unprivileged native code and a receiver in-
side the browser, we obtain a throughput of 200 bit/s, i.e.,
one order of magnitude higher than modern covert channels
in the browser. Table 1 compares the results of our covert
channel with the state of the art. In a virtualized setting
where the sender is running inside a virtual machine, we
reach a throughput of 80 bit/s. We also build a cross-browser
covert channel with an estimated throughput of 200 bit/s.
(Section 6).

2 Background
In this section, we present background information on microar-
chitectural attacks, and in particular port contention side-channel
attacks, JavaScript, WebAssembly, and literature on microarchitec-
tural attacks in the browser.

2.1 Microarchitecture and Port contention
Hyper-Threading and CPU ports.Modern Intel CPUs have an
implementation of simultaneous multithreading (SMT) commer-
cially referred to as Hyper-Threading Technology. It aims at allow-
ing more parallelization with the same microarchitectural compo-
nents. At an abstract level, the CPU splits each of its physical cores
into two logical cores, running their own processes. The logical
cores are independent at the OS level, acting as different physical
cores. At the microarchitectural level, however, they share common
hardware, such as L1 and L2 caches, or execution engines.

To optimize out-of-order execution, modern CPUs decompose
native instructions into smaller, atomic operations, called micro-
operations, or 𝜇ops. Figure 1 illustrates how the physical core de-
coder fetches the instructions and decomposes them into 𝜇ops. The
𝜇ops are then distributed to the execution engines by the scheduler,
through multiple CPU execution ports. Each port leads to several
execution units that will process the 𝜇ops. Then, when all 𝜇ops
of an instruction are executed, the instruction is completed and
committed to the microarchitecture. The distribution of 𝜇ops to

ports is deterministic, with each execution unit being specialized
to process certain types of instructions. For instance, arithmetic
𝜇ops are distributed to port 0, 1, 5 or 6 (P0156). The port usage of
instructions have been documented by Abel and Reineke [2]. The
ports are shared by all processes running on the same physical core.
This means that threads running on different logical cores, but on
the same physical core, output 𝜇ops to the same CPU ports.

Port contention side-channel attacks. Sharing microarchitec-
tural components between processes can leak information through
timing attacks. By timing the execution time of specific operations,
attackers can infer the state of the microarchitecture, possibly grant-
ing them access to secret information. Aldaya et al. [3] introduced
a timing attack based on port contention named PortSmash. As a
CPU port can handle a single 𝜇op per cycle, it can act as a bottleneck
in the flow of operations. Thus, by repeatedly calling and timing
instructions with a specific port usage, a spy process can monitor
𝜇ops from other threads on the same physical core. For instance, an
attacker can repeatedly call the crc32 instruction, which is decom-
posed into a single P1 𝜇op. This will create a bottleneck on P1. Next,
by measuring the execution time of the instruction, the attacker
knows if instructions from other processes co-located on the same
physical core are distributed on the same port. More specifically, if
the attacker’s instruction has a longer execution time than usual,
this means that another process has issued one or more 𝜇ops to P1.
Aldaya et al. exploited this vulnerability to mount an end-to-end
attack on OpenSSL’s TLS implementation and recover private keys.
Their side channel offer a spatial resolution, i.e., the smallest event
they can distinguish, of a single instruction.

Bhattacharyya et al. [5] leveraged port contention as a side chan-
nel in their speculative execution attack SMoTherSpectre, with
a spatial resolution of a single victim instruction. They also pre-
sented a methodology to find vulnerable gadgets. Gras et al. [14]
introduced ABSynthe, an automated framework to identify on-core
contention-based side channels. Their blackbox model does not
focus on specific microarchitectural components, e.g., CPU ports,
but on the interaction between different instructions.

Other microarchitectural side-channel attacks. The cache is
a small, fast memory. It is used to dynamically store copies of
frequently used memory to reduce access latency. Modern Intel
CPUs often have three levels of cache of different sizes. The L1
cache is the smallest and fastest, while the L3 cache, also known as
last-level cache, or LLC, is bigger and slower. Both L1 and L2 are
private to each core, whereas the LLC is shared by all physical cores.
Modern caches are set associative, meaning a cache line is stored in
a fixed set determined by its address, virtual or physical. It can be
stored in any of the ways of a cache set, based on the replacement
policy of this level. Modern Intel LLCs often have several ways,
ranging from 12 to 20. When the CPU needs to access a specific
address, it first queries the cache. If the address is stored in the
cache, the data will be directly served from the cache, resulting in a
short access time (a cache hit). If not, the CPU will access the data
from the DRAM, resulting in a slower access time (a cache miss).

Such timing differences can be exploited by an attacker to mount
side-channel attacks or covert channels. Yarom and Falkner pre-
sented Flush+Reload [43], a cache attack that exploits shared mem-
ory to infer whether the victim accessed a certain cache line. The

attacker evicts said line by using the native instruction clflush
and then, after a certain period, times the access to the address. If
the access time is short, this means the value has been loaded into
the cache between the flush and the reload, meaning the victim
has accessed said cache line. Flush+Reload has a spatial resolution
of a single cache line, i.e., 64 bytes. It, however, requires access
to native instructions, as well as shared memory. Liu et al. [23]
implemented Prime+Probe, a cache attack that does not require
shared memory or access to native instructions. Instead of sharing
a cache line with the victim and flushing it, the attacker uses an
eviction set, i.e., a group of addresses indexed on the same cache set,
to evict all previous lines in this cache set. This attack has a slightly
reduced spatial resolution compared to Flush+Reload, consisting
of one cache set. The size of a cache set varies between processors,
but it usually ranges from 12 to 20 cache lines, i.e., from 768 to 1280
bytes.

2.2 JavaScript and WebAssembly
JavaScript. JavaScript is a high-level object-oriented interpreted
scripting language that follows the ECMAscript standard [10]. It
is a major part of the World Wide Web as it is in charge of most
client-side computing in almost all websites. A user visiting a web-
site downloads and executes various scripts. As a consequence, it
is meant to run on the client’s hardware, and needs to be system-
independent. For security reasons, JavaScript is executed in a sand-
box, restricting access to local files, native instructions, andmemory
addresses.

JavaScript code is interpreted and executed in the browser by
the JavaScript engine [13, 26]. The just-in-time (JIT) compilation
approach taken by these engines means that the same code can be
executed differently based on the engine, browser, or even the OS
and microarchitecture.

WebAssembly.WebAssembly [42] (or wasm) is an open-sourced
binary instruction format designed to be deployed on the web, for
clients or servers. Its main feature is to allow compilation from var-
ious languages and executing them at native speed. On the client
side, WebAssembly is designed to run inside of the JavaScript sand-
box, hence ensuring the same security restrictions. WebAssembly
is currently supported by major web engines, including V8 (found
on Google Chrome and Microsoft Edge), WebKit (found in Apple
Safari) and SpiderMonkey (found in Mozilla Firefox).

WebAssembly functions as a low-level, assembly-like, program.
It is built around a stack-based virtual machine. It supports two
main formats: binary, which is directly interpretable by the engine,
and the text format, human-readable format, allowing to read and
modify compiled WebAssembly code. WebAssembly’s specification
is still under development, and it currently has around 100 specified
instructions, with various operands.

2.3 Timing attacks and microarchitectural
attacks in the browser

JavaScript timers.With the development of microarchitectural
attacks, in particular Spectre, browser vendors introduced several
countermeasures in order to providemore isolation to the JavaScript
sandbox. In particular, Reis et al. [29] introduced a new browser

architecture based on site isolation, where each site runs in a dif-
ferent process. This prevents an attacker to access the memory
space of other sites in the same browser. COOP and COEP [7, 8]
extended site isolation. They are a set of header between the top
level domain and all loaded resources. When enabled, the site is
considered cross-origin isolated, ensuring a unique process for the
context group and safe external resources.

To prevent the threat of timing attacks, most browser vendors
have removed access to high-resolution timers. The highest resolu-
tion timer available in recent browsers, performance.now(), has a
resolution of 5 µs with jitter in Chrome 94 and 20 µs in Firefox. This
is highly insufficient to mount microarchitectural attacks, as we
need to measure timing differences in the order of 10 ns. However,
auxiliary timers, able to recover a high resolution in the sandbox,
were described by Schwarz et al. [33].

The most powerful of these auxiliary timers is based on Shared
ArrayBuffer, an array shared between the main thread and a sub-
thread (Web Worker in JavaScript). The main thread initializes a
Web Worker and shares the array with it. Then, the Web Worker
constantly increments a variable in the array. As this operation
has a low and constant execution time, it can be used as a unit of
time by the main thread. The main thread can then read the shared
value to get a timestamp. This timer grants a resolution ranging
from 10-100 ns on recent browsers [30]. In the past, SharedArray
Buffer has been disabled by default to prevent timing attack threats.
However, they are available by default when the web page is cross-
origin isolated in Chrome 94 and Firefox 90 [7, 8]. Unless stated
otherwise, all timing measurements in the paper use SharedArray
Buffer-based clocks, thus the time unit is an increment.

JavaScript timing attacks. The fact that microarchitectural at-
tacks can be mounted from JavaScript brings major changes to
their threat model. On the one hand, it allows running code on the
victim’s hardware on a very large scale. For instance, an attacker
can buy an advertisement on a popular website and will be able to
run its scripts on all visitors of said website [11]. On the other hand,
the sand-boxed execution brings many major restrictions to the
implementations of such attacks. The lack of native instructions
or memory addresses, for instance, removes the possibility to im-
plement some classes of attacks, such as attacks based on Flush+
Reload [43].

However, in 2015, Oren et al. [27] implemented the first entirely
web-based cache attack. Many different types of web-based mi-
croarchitectural attacks were since demonstrated, exploiting other
components or features, including the DRAM [16], ASLR [15], and
even speculative execution [18].

Covert channels in browsers. Covert channel in the browsers
break the fundamental principle of the JavaScript sandbox isolation.
In particular, previous work has studied covert channels based on
hardware timing attacks. Oren et al. [27] presented a covert channel
based on Prime+Probe with a bandwidth estimated at 320 kbit/s.
However, this number was estimated before the introduction of
countermeasures against microarchitectural attacks in this browser.
To the best of our knowledge, there has been no work on Prime+
Probe subsequently to these countermeasures. The closest covert
channel is the one used to extract data in the transient execution
attack RIDL [39], with a bandwidth of 8 bit/s using Evict+Reload.

Rushanan et al. [31] used CPU-throttling to build a covert chan-
nel with a bitrate of 0.2 bit/s. Schwarz et al. [33] implemented
a DRAM-based covert channel in the browser. They reached a
bitrate of 11 bit/s when using SharedArrayBuffer-based clocks.
Lipp et al. [21] presented a cross-browser channel using network
interruptions, reaching a bandwidth of 25 bit/s. Van Goethem and
Joosen [38] exploited disk or memory contention to send bits every
200ms, thus granting a maximal raw bandwidth of 5 bit/s.

Software covert channels have also been implemented in the
browser. For instance, Vila and Köpf exploited Chrome’s event
loop, shared between tabs, to create a covert channel with a raw
capacity of 200 bit/s for a same-browser channel and 5 bit/s in a
cross browser setting. However, this vulnerability has been miti-
gated with the introduction of site isolation [29], as different tabs
or processes do not share an event loop anymore.

3 Web-Assembly-Based Port Contention
We introduce, to the best of our knowledge, the first implementation
of port contention inside a browser. We can create and measure port
contention from the JavaScript sandbox, on both Mozilla Firefox
and Google Chrome. We found instructions that create contention
on both P1 and P5, allowing diverse potential victims.

Experimental setup and threat model. Unless stated otherwise,
we run all experiments on an Intel i5-8365U CPUwith amaximal fre-
quency of 1.60GHz running Ubuntu 20.10, with Mozilla Firefox 90
and Google Chrome 95 desktop version, both using WebAssembly
1.13. As Safari and Edge support WebAssembly, the attack can the-
oretically be carried on these browsers, but they remain outside of
the scope of this paper. The threat model is similar to a user visiting
a malicious website with his browser. The browser scripts run in a
cross-origin isolated browser [7, 8], granting more context isolation
and allowing access to SharedArrayBuffer and higher resolution
timers.

Description. Figure 2 illustrates the principle of our web-based
port contention attack. The attacker is situated inside of the browser
sandbox, in the blue process. During the attack, he repeats specific
instructions that cause contention on a specific port. Section 4 ex-
plains how we find these instructions on different systems. For
instance, on our processor, the WebAssembly ctz (Count Trailing
Zeros) instruction creates contention on P1. Similarly, instructions
that truncate floats to integers, e.g., trunc_f32_u, create contention
on P5. The attacker then times the execution of these instructions.
If no other processes use the same port at the same time, these
instructions will all be executed in a row, resulting in a fast ex-
ecution time, as exemplified in Figure 2(a). However, if another
process emits 𝜇ops on the same port, these 𝜇ops will be queued
with the attacker-generated 𝜇ops, resulting in a slower execution
time for the attacker, as illustrated in Figure 2(b). By measuring
these differences in timings, the attacker process can monitor the
port usage on a specific port, and thus monitor other processes.

Challenges.We face three challenges when implementing port
contention in the browser. First, as browser-based scripts run in
a controlled sandbox, we have no access to native instructions,
3We used the latest version available in November 2021. This version did not support
vectorial types and SIMD instructions.

Attacker

Victim

Attacker
instr

Scheduler

Port 1

Atk
instr

Atk
instr

Execution
engine

(a) Victim has not used port 1: all attacker instructions are executed
in a row.

Attacker

Victim

Wasm
instr

Victim
instr

Scheduler

Port 1

Atk
instr

Victim
instr

Atk
instr

Execution
engine

(b) Victim emitted one 𝜇op on port 1: attacker instruction will be
delayed.

Figure 2: Illustration of web port contention.

and must instead use higher-level language constructs (C1). Fur-
thermore, as browser-based scripts are meant to be portable, the
instructions are translated to different assembly language instruc-
tions by the browser’s engine on different systems. This means that
the same script generates different native instructions depending
on the CPU architecture, each with a different port usage, varying
from vendors and generations. The code is also highly optimized by
the engines, and execution can vary even on the same system, based
on the variables or structure of the code. To gain more control over
the port usage of our attacks, we mounted our attack with Web-
Assembly. This grants us access to smaller, more atomic instructions.
However, these instructions are still executed through the browser’s
JIT engine, and their translation to machine language can vary from
a system to another. For instance, theWebAssembly instruction ctz
is translated into the native Intel instruction TZCNT on our system,
as we describe in more detail in Section 4. The TZCNT instruction, in
turn, is implemented using a single 𝜇op which is executed on P1 [1].
Thus, repeatedly executing the WebAssembly instruction ctz can
cause contention on P1. The Intel instruction TZCNT is only avail-
able, however, on CPUs starting from the Broadwell generation.
Thus, the WebAssembly ctz instruction may generate contention
on another port in older CPU generations. Directly compiling na-
tive code using x86 assembly instructions to create contention is
not possible. Since WebAssembly is designed as a portable lan-
guage, the compilers cannot compile instructions that are directly
architecture-dependent, as they could not run on non-Intel CPUs.

Secondly, the high level of abstraction provided by the browser
means that an attacker can neither know nor control on which
core the attack is executed (C2). Furthermore, the operating sys-
tem’s scheduler dynamically moves processes between cores to
optimize computing and save energy. We address this challenge by
performing our attack on multiple cores simultaneously by using
Web Workers, JavaScript multi-threading implementation, which

4.7 4.75 4.8 4.85 4.9 4.95 5
0

20

40

60

Execution time (ms)

Pe
rc
en
ta
ge

of
oc
cu
rr
en
ce
s

Control experiment
P1 contention

Figure 3: Port 1 contention experiment on i64.ctz for
1 000 000 instructions.

creates a sub-thread running in a different process. This lets the
attacker create as many attacker processes as physical cores, and as
they all have a high workload, they are spread on different physical
cores. Then, one of the attacker processes runs on the same core as
the victim process, able to monitor it.

Finally, our attack requires high-resolution timers to monitor
processes at the 𝜇op level (C3). Native implementations of port
contention attacks all use the cycle-accurate rdtsc instruction. As
explained in Section 2, browser vendors have restricted access to
such timers inside of the sandbox to prevent timing attacks. In our
attack, unless stated otherwise, we use SharedArrayBuffer-based
timers, which offer a resolution and measurement time in the order
of 20 ns [30, 33].

Proof-of-concept. Figure 3 shows a proof-of-concept illustrating
the contention on P1 caused by the WebAssembly i64.ctz instruc-
tion.

In this experiment, we time the execution of 1 000 000 Web-
Assembly i64.ctz instructions using the low-resolution JavaScript
function performance.now. We run the experiment on Firefox 90,
where this timer offers a resolution of 20 µs without jitter. In paral-
lel with the Firefox code, we also run a sender program written in
native code and pinned to the same processor. In the P1 contention
experiment, the native sender runs the Intel instruction crc32 in a
loop. This assembly language instruction is known to cause con-
tention on P1. In the control experiment, the native sender runs
a simple loop designed not to cause port contention. We run this
program, instead of simply not executing the sender at all, to ensure
that the difference stems from port contention, and not from other
sources. As the figure shows, the timings measured during the P1
contention experiment are on average 5% higher than the control
experiment, allowing the browser to efficiently distinguish between
the two distributions. We observe similar results on Chrome 95.

In the following sections, we describe how to convert this proof-
of-concept into practical attacks. In particular we obtain a higher
spatial resolution and evaluate 100 WebAssembly instructions (C1),
we ensure the attacker does not have to pin processes (C2), and we
use a higher resolution timer (C3).

4 PC-detector
The translation of WebAssembly instructions into 𝜇ops is variable
on different systems: it can depend on the microarchitecture, in-
struction extension sets or JavaScript engine. In this context, it can
be hard to find WebAssembly instructions that reliably cause port
contention. In this section, we propose PC-detector, a Selenium-
based framework to dynamically detect and characterize the port
usage of WebAssembly instructions. Using the methodology de-
scribed in Section 3, PC-detector automatically tests multiple Web-
Assembly instructions and checks if they cause contention on P1
or P5.

4.1 Description
Framework. Our framework is composed of two components. The
first component is a native C script that either runs an empty loop,
creates contention on P1, or creates contention on P5. The second
component is a Selenium-controlled browser which runs automati-
cally generated WebAssembly code. For eachWebAssembly instruc-
tion instr , we create a binary file with 1 000 000 calls. This file is
then executed in the browser, and its runtime is measured using
performance.now(). We run three experiments:

(1) Repeatedly executing and timing theWebAssembly file, used
as a control.

(2) Creating contention on P1 with native code and timing the
WebAssembly file.

(3) Creating contention on P5 with native code and timing the
WebAssembly file.

By evaluating the timing distributions of these three experiments,
we can evaluate the port usage of instr . If the three distributions are
mixed, instr is not affected by the port contention (thus it cannot
cause it). If the P1 timings (respectively P5) are, on average, higher
to both the control and P5 (respectively P1), this means instr can
detect, and cause, contention on P1 (respectively P5).

We evaluate all standardized single and double operand opera-
tions [41], including arithmetic operations and memory operations.
Due to the stack machine structure of WebAssembly, each experi-
ment includes a load operation to add values to the stack between
each operation. We discovered that due to JIT optimizations, it
is not possible to load many values on the stack before running
double operand operations in a row, as the compiler reorders the
instructions to alternate between loads and the tested operation.
Therefore, we could not run all double operand operations one after
the other. We evaluate single instructions when instructions have
an output the same type as their input, and pairs of complementary
instructions in the other case (e.g., convert a 32 bit integer into a
64 bit float). We do not evaluate control flow operations, e.g., loops
or jumps.

Metrics.We propose two main metrics to automatically evaluate
if a WebAssembly instruction can create contention on P1 or P5.
The first one is based on the error rate between timings from the P1
and P5 experiments. For this metric, we compare P1 to P5 instead
of P1 to control, as the control experiment does not run calculation
on the native side. This means that the timing differences could
originate from other sources than port contention, e.g., variation in
frequency or contention on another shared hardware component.

Table 2: WebAssembly instructions causing port contention.
For clarity, we group together the 32- and 64- bits versions
of instructions under one line marked i32/i64.

Instruction P1 contention P5 contention Cohen’s d
i32/i64.ctz 1.2
i32/i64.clz 1
i32/i64.popcnt 1
i32/i64.div_s 10
i32/i64.div_u 10
i32/i64.rem_u 34
i32/i64.rem_s 5
f32.convert_i32_s and i32.trunc_f64_s 1
f32.convert_i32_s and i32.trunc_f32_s 2
f32.convert_i64_s and i64.trunc_f32_s 8
f32.convert_i32_u and i32.trunc_f32_u 2
f32.demote_f64 and f64.promote_f32 3
i32.wrap_i64 and i64.extend_i32_u 16
i32.wrap_i64 and i64.extend_i32_s 11

P1 and P5 have two timing distributions, and one distribution (𝑋𝑙𝑜𝑤)
has lower timings than the other distribution (𝑋ℎ𝑖𝑔ℎ) when there is
contention. Given a temporal threshold 𝜏 , we define the error rate
as the proportion of values of 𝑋𝑙𝑜𝑤 > 𝜏 and values of 𝑋ℎ𝑖𝑔ℎ < 𝜏

over all experiments. We define the error rate for a given threshold
as

𝑒𝑟𝜏 =
|𝑋𝑙𝑜𝑤 > 𝜏 | + |𝑋ℎ𝑖𝑔ℎ < 𝜏 |

|𝑋𝑙𝑜𝑤 | + |𝑋ℎ𝑖𝑔ℎ |
.

Then, by computing 𝑒𝑟𝜏 for [𝑚𝑖𝑛(𝑋𝑙𝑜𝑤) < 𝜏 < 𝑚𝑎𝑥 (𝑋ℎ𝑖𝑔ℎ)], we
can retrieve the lowest error rate possible, giving us the probability
for a program to blindly distinguish between port contention and
standard usage from experiment timings. By inverting 𝑋𝑙𝑜𝑤 and
𝑋ℎ𝑖𝑔ℎ and computing the best error rate, we can see if an instruction
creates contention on P1, P5 or none. In PC-detector, we infer that
if 𝑒𝑟 < 5%, an instruction creates contention.

The error rate calculation lets us identify whether an instruction
creates contention. It does not, however, illustrate the efficiency
of this contention, i.e., how separated both distributions are or
how spread they are. This parameter is important in our attacks,
as the more distance between the distributions, the easier it is to
distinguish between contention and standard usage. In order to
measure the distance between P1 and P5, we compute the effect
size, also known as Cohen’s 𝑑 . In our case, Cohen’s 𝑑 between P1
and P5 is defined as

𝑑 =
|𝑚𝑒𝑎𝑛(𝑃1) −𝑚𝑒𝑎𝑛(𝑃5) |√
(𝑠𝑡𝑑𝑒𝑣 (𝑃1) + 𝑠𝑡𝑑𝑒𝑣 (𝑃2))/2

,

with stdev() the standard deviation of the distribution. A high Co-
hen’s 𝑑 means that distributions are highly separated and concen-
trated, and that we can more easily distinguish contention from
standard usage.

4.2 Results
Wehave tested 100 different instructions, including numerical, mem-
ory, bit-wise, and type conversion operations.

Table 2 lists which instructions cause contention on the i5-8365U.
The results are identical between Chrome and Firefox, although
the distance varies because of the different browser architectures.
In total, we found 21 instructions causing contention. As most
instructions have 32- and 64-bit variants, some instructions are

doubled. Generally, we observe that 64-bit variants have a greater
Cohen’s 𝑑 than their 32-bit counterparts. Similarly, the unsigned
variants of integer operations often grant better results than the
signed variants.

P1 contention seems to be caused by arithmetic instructions,
whereas conversion/truncation operations create contention on
P5. This result is coherent with the specialization of ports and
execution units. i64.rem_u shows the highest effect size of all
detected instructions.

To demonstrate the portability of port contention and PC-detector,
we have ran the same benchmark on different Intel CPUs. In total,
we have tested 4 recent CPUs: i5-8365U, i7-8650, i7-10510 and i7-
10610. The instructions creating contention remain constant, but
Cohen’s 𝑑 can vary based on the CPU frequency. This is logical,
as all tested cores have the same instruction set extensions, mean-
ing that the WebAssembly instructions are translated to the same
native instructions.

5 Side-channel Attack on Artificial
Applications

In this section, we present an artificial gadget, illustrating the side-
channel threat of web-based port contention. We built a synthetic
and generic example showing how a program, which execution
depends on secret information, is vulnerable to WebAssembly port
contention. Indeed, if a program has branches depending on se-
cret bits, an attacker can use a side-channel attack to infer the
secret. The victim process is an unprivileged native process. The
attacker is a JavaScript and WebAssembly script, running inside
of the browser’s sandbox. The attacker has no access to addresses,
native instructions, and no control or knowledge of physical or
logical cores.

In our implementation, an attacker, running code inside the
browser’s sandbox, monitors the victim’s execution with a spatial
resolution of 1024 native instructions, i.e., 3072 bytes. This spatial
resolution is of the same order of magnitude as other microarchi-
tectural attacks in the browser, e.g., Prime+Probe, which has a
resolution of a cache set (typically 12 to 20 cache lines), i.e., 1280
bytes on our system.

5.1 Description
The victim is a native unprivileged program, running different code
sections based on the bits of secret information. As port usage
differs between branches, an attacker monitoring port contention
could infer parts of the secret. Listing 1 illustrates our gadget, imple-
mented in native assembly code. Depending on a secret bit, the code
will execute either instructions creating contention on P1 or P5. To
detect from within the browser which path is taken by the victim,
we time the execution of 𝑛𝑏𝑖𝑛𝑠𝑡𝑟 WebAssembly rem_u instructions,
which creates contention on P1 (Section 4). If the execution time is
high, then we know that the native code also creates contention on
P1, whereas if it is standard, we know that the native code does not
create contention. By repeating this process, we detect the branch
that was executed by the native script, and hence the value of the
secret bit.

After resolving C1 with PC-detector and C3 with SharedArray
Buffers, we still face the inability to pin the attack code to the same

Listing 1: Side channel artificial example. Depending on the
key bit passed in parameter, the codewill have different port
usage.

TEST %rd i , % r d i
JE . p 1
JMPQ . p 5

. p 1
POPCNT %r8 ,% r8
POPCNT %r8 ,% r8
. . .
POPCNT %r8 ,% r8
POPCNT %r8 ,% r8

. p 5
VPBROADCASTD %xmm0 , %ymm0
VPBROADCASTD %xmm0 , %ymm0
. . . .
VPBROADCASTD %xmm0 , %ymm0
VPBROADCASTD %xmm0 , %ymm0

physical core as the victim (C2). Most schedulers try to balance the
workload between physical cores. By creating a number of listening
Web Workers equal to the number of physical cores, we maximize
our chances that one of them listens on the victim’s physical core,
thus circumventing C2. Information about the system’s core count
is available through the navigator.hardwareConcurrency Java-
Script API [25], available by default on both Chrome and Firefox.

5.2 Results
An important metric for our evaluation is the spatial resolution, i.e.,
the smallest number of instructions we can detect in a branch. To
detect contention, we measure the execution time of 𝑛𝑏𝑖𝑛𝑠𝑡𝑟 Web-
Assembly rem_u instructions. This parameter is important: a high
number of instructions lowers our spatial resolution, but a lower
number yields noisier time measurements. Furthermore, for values
of 𝑛𝑏𝑖𝑛𝑠𝑡𝑟 ranging from 1 to 10, the execution time of the instruc-
tion is slower than the read access to the shared array and other
overhead introduced by JavaScript. This means that contention is
measured at only specific times in the measurement. To reduce
the measurement time of SharedArrayBuffer, we access the array
directly, without using concurrent access libraries. This grants a
better resolution to the timer but creates more noise and outliers.
On our system, we were able to create a web listener running in
the same physical core as the victim in 95% of our experiments. We
infer that the remaining errors stem from the scheduler moving our
process to different cores because of other threads creating noise.

On our system, we found 𝑛𝑏𝑖𝑛𝑠𝑡𝑟 = 10 to be the best compromise
between noise and resolution. To reduce the noise, we process the
data with a median sliding window with a width of 10 measure-
ments. Figure 4 illustrates the resulting values when the victim runs
the code with the secret 1101001, for a single trace of the victim. The
high values represents the execution of the victim branch creating
contention on P1 i.e., a bit set to 1. The width of a peak or a pit is
proportional to the number of bits inside the sequence.

Our implementation is able to detect the executed branch with a
resolution of 1024 native instructions on both Google Chrome and
Mozilla Firefox. To obtain this result, we first implement Listing 1

0 10 20 30 40
0

200

400

Measurements (𝑛𝑏𝑖𝑛𝑠𝑡𝑟 = 10)

Ex
ec
ut
io
n
tim

e
(S
ha

re
dA

rr
ay

Bu
ff

er
in
cr
em

en
ts
)

Figure 4: Single-trace execution with secret information
1101001, on Chrome 95.

with a very high number of POPCNT and VPBROADCASTD instructions,
that we progressively lower. The resolution is the lowest number of
instructions where we can clearly retrieve the secret bits without
error on a single victim trace.

This experimental limit of 1024 instructions is mainly due to
the lack of access to high resolution timers. Note that we observe
two peaks per secret bit with a single trace. We have found that a
higher resolution of 512 instructions could introduce errors with a
single-trace attack. One solution to increase the resolution would
be to revert to multiple-trace attacks. Moreover, by using a custom
browser implementing performance.rdtsc(), based on the native
cycle accurate timer, we observed that our implementation has a
resolution of 256 instructions, i.e., a better spatial resolution than
Prime+Probe. This means that our experimental limit could be low-
ered with better auxiliary timers or noise filters, which could offer
a more fine-grained attack vector than existing microarchitectural
side channels in the browser.

6 Covert channel
In this section, we present a port contention-based covert chan-
nel with a throughput of 200 bit/s for a 1% error rate. This covert
channel is composed of a sender running unprivileged native code,
and a receiver running completely inside the browser (similarly as
Schwarz et al. [33]). We also show that our covert channel runs
with a sender located inside a VM, and can even be used in a cross-
browser fashion (similarly as Lipp et al. [21]).

The sender runs unprivileged C code on the victim’s hardware.
The sender can therefore freely use most native instructions, and
has access to cycle-accurate timers. It can also pin itself to a cer-
tain physical or logical core. The receiver, on the other hand, runs
fully inside a cross-origin isolated web page. As it runs inside the
browser’s sandbox, the receiver has no access to native instruc-
tions. Port contention must be created and measured by using
WebAssembly (C1). Moreover, the web script must share a physical
core with the sender, but cannot control or know on which physical
core it is running (C2). Finally, the receiver does not have access to
high resolution timers (C3). Instead, we use SharedArrayBuffers
to get the best resolution available.

6.1 Description
We implemented a half-duplex asynchronous channel based on port
contention, between a native sender and a web-based receiver. In
addition to data, the sender and receiver exchange control messages
to handle acknowledgments and synchronization. Both parties must
therefore be able to send and receive bits. Our side channel can be
decomposed into two layers. The lower layer, sending and receiving
bits, is equivalent to the physical layer of the TCP/IP model. This
layer uses CPU ports as its transmitting channel, and must be able
to distinguish between 0 and 1 bits. The upper layer is equivalent to
the data-link layer. This layer handles the synchronization between
the parties, as well as error management.
Physical layer. The two parties send 1-bits by creating contention
on P1 for a fixed duration (𝑡𝑏𝑖𝑡), and send 0-bits by idling for 𝑡𝑏𝑖𝑡 .
𝑡𝑏𝑖𝑡 is an important factor, as a high duration lowers the channel’s
bandwidth but allows the receiver to tolerate more noise when
attempting to distinguish bits. In our covert channel implementa-
tion, we have fixed 𝑡𝑏𝑖𝑡 = 1ms. To create contention, the sender
and receiver repeatedly call an instruction, respectively the native
Intel instruction crc32 and the WebAssembly instruction rem_u.
To receive a bit, the sender or receiver repeatedly call these in-
structions while timing them. A high execution time means the
emitting party is sending a 1, while a standard time means a 0. As
both instructions are handled by the CPU port P1, both the sender
and receiver cannot emit at the same time, making our channel a
half-duplex channel. Besides their high resolution, another advan-
tage of a SharedArrayBuffer-based timer is that it is based on a
Web Worker, and therefore runs on a different core. This lowers
potential noise on the covert channel.

We also need to ensure both the sender and receiver are running
on the same core (C2). As the browser cannot control which core it
is running on, the sender creates as many sub-senders as physical
cores. The sender runs native unprivileged native code, so it knows
the number of physical and logical cores, and can pin each of its
sub-threads to a specific core. This ensures that at least one sender
thread is running on the same physical core as the receiver.

Although SharedArrayBuffers offer a high resolution, they can
introduce errors at the physical layer level. In particular, concurrent
accesses between the thread incrementing a value and the main
thread reading the timestamp can cause insertion or deletion errors.
We have determined two error-prone scenarios at the physical level.
In the first scenario, the main thread reads the shared value too
frequently. This prevents the clock thread from incrementing the
value, and as a result the measured time is much lower than the
real time value. The other scenario stems from particularly high
measurement outliers when contention is created. We assume it
also comes from concurrent accesses. As this access is longer than
usual, it means that we can get less measurements during 𝑡𝑏𝑖𝑡 , thus
creating bit deletion errors on higher layers.
Protocol and frame format. To ensure synchronization and cor-
rect potential errors, we implemented a simple protocol above our
physical layer, similarly as Maurice et al. [24]. Figure 5 illustrates a
typical exchange, as well as packet loss management. It is based on
a simple request-to-send scheme: the receiver sends a request frame
(described in Figure 6(a)), containing a 4-bit sequence number. Upon
reception, the sender sends a data frame (described in Figure 6(b)),

Sender Receiver
Request
SEQN 0

Data
SEQN 0

Request
SEQN 1

Request
SEQN 1

Data
SEQN 1

Request
SEQN 1

Data
SEQN 1

×

×

Figure 5: Illustration of the protocol’s synchronization in
case of lost or incorrect packet.

0 1 2 3 4 5 6 7

Init sequence Encoded -
-Sequence
number

(a) Request frame.
0 1 2 3 4 5 6 7

Init sequence Sequence
Number

Data

Berger code

(b) Data frame.

Figure 6: Format of the request and data frames.

containing the sequence number as well as the associated data (1
byte). If the data frame is received correctly, the receiver requests
the next sequence number. Both frames start with a 4-bit preamble
consisting of an initial sequence which is always set to 1010. This
initial sequences serves as calibration for the receiver.

To handle possible insertion or deletion errors, we added an error
detection code. More specifically, the sequence number is encoded
with (8,4) Hamming code [17] in request frames, and the last 4 bits
of the data frame contain a Berger code [4], counting the number of
zeros in the data and sequence number fields. As the type of errors
we face are mainly bit insertion or deletion, we do not use the error
correcting properties of Hamming code, and instead use it as an
error-detection code.

Our protocol encodes 8 bits of payload into a 31-bit message,
including the preamble, sequence numbers and error detecting
code. This means that, with 𝑡𝑏𝑖𝑡 =1ms, we can reach a maximal raw
throughput of 1 kbit/s, i.e., a theoretical maximum of data bit rate
of 260 bit/s.

Our protocol also manages packet loss and desynchronization.
This is handled by the sequence number and the request-to-send
scheme. As illustrated in Figure 5, after sending a request, the
receiver waits for a fixed timeout value. If it has not received an
answer at the end of this time period, it simply re-sends the request.
This lets the covert channel recover from packet loss from the
sender to the receiver, and from the receiver to the sender.

Receiving frames. The sender and receiver do not share a com-
mon clock. Hence, the party receiving bits does not know in ad-
vance the demarcations between successive bits, nor when the
frame starts. It is processing execution time of instructions as a
real-time stream of information, not in post-processing. In order
to automatically detect the start of the frame, as well as the actual
bits, both sender and receiver run DenStream [6], a density-based
data-stream clustering algorithm. It dynamically creates clusters
of data, based on the execution time and their time of arrival. The
listening party then detects the start of the frame when it detects
4 consequent small clusters with variation in execution time, cor-
responding to the initial sequence of 1010. The initial sequence is
used to calibrate two major values: the temporal threshold between
0-bits and 1-bits, as well as the average number of instructions in a
single bit. The average number of points lets the algorithm detect
the number of bits in a sequence. As DenStream computation can
be slow when we reach a high bit rate, we only use it to detect the
preamble. For the rest of the frame, we use a simple stream-based
threshold detection: timings above the calibration threshold are
identified as 1-bits, and others as 0-bits.

To infer the actual number of bits in such a sequence, we use the
average number of instructions calibrated from the initialization
sequence. Then, by dividing the number of instructions in our same
bit sequence, we can infer how many bits it contains. This step is
prone to insertion or deletion errors.

When the stream algorithm has detected a number of bits corre-
sponding to the frame size, it stops listening. If the frame is invalid
because of insertion and deletion errors, we try to reinterpret it with
slightly modified calibration values. Indeed, variation in frequency
can cause slight changes on the number of measurements in a bit,
e.g., a frequency raise means we measure more instructions in a bit,
thus potential insertion errors.

6.2 Evaluation
We evaluated our covert channel in two different scenarios. The
first scenario is the baseline implementation, where both the native
sender and web-based receiver run in a standard OS. In the second
scenario, the native sender now runs in a virtual machine running
on the victim’s physical hardware, while the browser runs in the
standard OS. This scenario is common, as malware analysis is of-
ten conducted in sandboxed environments such as VMs. We also
evaluate the impact of noise on our covert channel.

Native sender. This threat model represents the most common
scenario, where both the browser and the native sender run as
unprivileged processes in the OS. We evaluated our covert channel
by transmitting 10 kB of data from the native sender to the web-
based receiver. To compute the error rate, we compare the original
and received bit sequences bit-by-bit.

Table 3: Evaluation of the port-contention covert channel in
different conditions.

Experimental setup Bit rate Packet Loss rate Error rate
Noiseless 200 bit/s 5.5% 1%
stress -c 2 170 bit/s 8% 3%
stress -m 2 120 bit/s 15% 3%
stress -c/-m 3 25 bit/s 80% 5%
stress -c/-m 8 <1 bit/s 99% 5%

Table 3 illustrates the bit rate and error rate of our channel
in different noise conditions. The transmission takes, on average,
slightly less than 7min. During the transmission, on average 600
frames arrive incorrectly or are lost from the sender to the receiver,
over a total of 10 600 frames. This represents a total frame loss rate
of 5.5%. Most of the incorrect frames were the result of insertion or
deletion errors. The lost frame rate from the receiver to the sender
is negligible. We achieve a bit rate of 200 bit/s. This is 80% of the
maximal bandwidth possible when using 𝑡𝑏𝑖𝑡 =1ms. The difference
between the bit rate upper bound and our implementation stems
from the loss of frames, which requires the sender to wait for some
time before requesting the data again, as well as from the short
computation time required to handle the protocol.

In this setup, our covert channel presents a better bit rate than
previous web-based covert channels [21, 31, 33, 38, 40]. The only
covert channel with a better resolution is Prime+Probe by Oren et al.
[27]. However, recent countermeasures had a substantial negative
impact on the bit rate. To the best of our knowledge, no other Prime+
Probe covert channel has been implemented since that allows us
to compare between the two approaches. The closest cache covert
channel is the one presented by van Schaik et al. in RIDL [39], with
a bit rate of 8 bit/s.

We now evaluate our covert channel in the presence of noise.
Noise can impact both the bit transmission through port contention,
and the SharedArrayBuffer clock. Indeed, we observe that when
stressing the physical core used by the SharedArrayBuffer clock,
the number of ticks we measure in each time period decreases,
in turn decreasing our resolution. However, our covert channel
shows strong resilience to sources of noises with a low thread
count. That is because port contention depends on the physical
core. As our sender and receiver already use a major part of the core
computing capacities, the OS scheduler tends to move other noisy
processes to different physical cores, thus lowering their impact
on our covert channel. For instance, when running stress with
square root (-s) or malloc (-m) on two threads, the bit rate remains
on the same order of magnitude. The loss of performance stems
from a higher rate of lost frames due to clock outliers. Our channel
also shows better resilience to sources of noise with a low thread
count than cache covert channels, as the LLC is shared between
cores [24]. However, if a noisy thread runs on a physical core shared
either by the clock or the receiver, the performance significantly
drops, as illustrated in the stress -c 3 case. In that case, the lost
frame rate increases drastically because of lower resolution from
our timer. Introducing specific error-correcting codes to correct

0 10 20 30 40 50 60 70 80 90100110120130140150160170180190
80

90

100

110

120

Time

Ex
ec
ut
io
n
tim

e
(S
ha

re
dA

rr
ay

Bu
ff

er
in
cr
em

en
ts
)

Figure 7: Transmitted square signal from Firefox 90 to
Chrome 94 with 𝑡𝑏𝑖𝑡 =1ms

insertion or deletion errors could greatly improve the performance
of the channel in noisy conditions.

Virtualized sender. We also evaluate our channel in a virtualized
setup. In this scenario, the native sender runs inside of a virtual
machine running Ubuntu. The browser runs in the standard OS.
The main change in the threat model is that the native sender has
no control or knowledge of cores, physical or logical. However, by
creatingmultiple sender threads and not pinning them, wemanaged
to force at least one sender thread to run on a physical core shared
with a receiver. In this setup, our covert channel has a bit rate of
80 bit/s. This bit rate is still higher than that of many browser covert
channels [21, 31, 33, 38, 40], and even equivalent to some native
covert channels in the same setup [34].

6.3 Cross-Browser Covert Channel Bandwidth
Estimation

Our covert channel can be extended to a cross-browser setup. As we
can create and detect contention on the browser, we can replace the
native sender with a JavaScript sender. This has two major impacts
on the effectiveness of the attack. First off, the web-based sender
loses access to powerful native timers, potentially creating new
errors on the request frames. Most importantly, the browser has no
knowledge of physical or logical cores. It cannot know nor control
on which core it is running. To circumvent this difficulty, the web-
based sender creates a number of WebWorkers equal to the number
of physical cores of the machine. By doing so, the scheduler will
spread these senders on different physical cores. When launching
the receiver, however, the senders are not the only processes using
a high workload, and we have noticed that launching the receiver
and the SharedArrayBuffer clock after the sender results in a
physical core running both the clock and the receiver, and the
senders sharing the remaining core. We overcome this limitation by
initializing the clock and receiver before the sender. As a result, the
scheduler assigns a physical core shared by a receiver and a sender,
effectively allowing the implementation of our covert channel.

Using this technique, we were able to transmit bits of informa-
tion across browsers through port contention with 𝑡𝑏𝑖𝑡 = 1ms. i.e.,
conditions equivalent to the native-to-web covert channel. We were
able to demonstrate data transfer at the physical layer from Chrome
to Firefox, from Firefox to Chrome, and between two instances of

the same browser. Figure 7 shows the transmitted square signal
from Firefox to Chrome. We did not re-implement the data-link
layer to this threat model, as it represents significant engineering
work, and leave it to future work. However, this proof of concept
solves all scientific and technical challenges, including the most
difficult, i.e., core management (C2), by its ability to transmit bits.
As the physical layer offers similar bit and error rates to the na-
tive sender, even for a long duration of transmission, it is safe to
estimate that this cross-browser covert channel can reach a final
bandwidth on-par with the native-to-web covert channel, i.e., in
the order of 200 bit/s.

7 Discussion
In this section, we discuss the limitations of our approach, potential
countermeasures, as well as future work.

7.1 Limitations
TheWebAssembly implementation of port contention offers a lower
spatial resolution than the native PortSmash attack proposed by
Aldaya et al. [3]. Most of this performance loss originates from the
challenges introduced by the JavaScript sandbox. In particular,C3 is
the most challenging aspect. Although auxiliary timers offer a very
high resolution, they are still inaccurate compared to native cycle-
accurate timers. This difference particularly impacts the attack’s
spatial resolution, as timer imprecision prevents us from measuring
small time differences.

Another limitation, inherent to port contention and SMT attacks,
is that this attack cannot run in a cross-core setting. We can effec-
tively circumvent C2 by creating more threads to share a core with
the victim, but the attack still depends on the OS scheduler. If the
attacker cannot run code on the victim’s physical core, the attack
does not succeed.

7.2 Countermeasures
Many countermeasures have been proposed to mitigate microarchi-
tectural attacks. However, most of these propositions are heavily
focused on cache-based side channels. In this section, we provide
an overview on existing academic work or other suggestions that
focus on mitigating contention-based side channels.

Hardware. One pre-requisite of port contention attacks is sharing
CPU ports between a victim and an attacker. SMT is therefore
at the core of the attack. To prevent SMT-based side channels,
including port contention, some have suggested disabling SMT
altogether. For instance, SMT is disabled by default in OpenBSD [20]
or Google’s ChromeOS [12]. However, this proposition represents
a major performance degradation of up to 15% [5], as SMT allows
for a highly efficient use of hardware resources.

Townley and Ponomarev [37] proposed SMT-COP, a hybrid ap-
proach based on partitioning the use of resources between threads.
This partitioning could be either temporal, each thread accessing
the resource after the other, or spatial, each thread having their
execution units. Their approach must be supported by the hardware
and introduces a performance overhead of 8% compared to standard
SMT, while preventing most contention-based side channels on the
execution units or ports.

More recently, Taram et al. proposed SecSMT [36], focusing on
more secured shared resources against contention-based side chan-
nels. Their approach introduces, at the hardware level, different
ways to share resources. In a static partitioning, the resources are
statically shared between logical cores. In an adaptive partitioning,
the partition of resources evolves according to the workload of
logical cores to enhance parallelization. However, the resources
are never used by both cores at the same time. More interestingly,
asymmetric partitioning relies on different levels of trust. This
model gains even more performance by letting a low level security
thread leak information to a high-security thread, but not letting
high-security information leak to other threads. This is particularly
interesting in a browser-based scenario. It is unsafe to leak infor-
mation to the sandbox, whereas leaking sandboxed information to
other threads presents less threats. Their asymmetric partitioning
presents almost no overhead compared to traditional SMT.

OS and applications. Softwaremitigations, outside of the browser,
have also been suggested. First, similarly to cache-attacks mitiga-
tions, static or dynamic analysis has been suggested in the original
PortSmash article [3]. In particular, a process could try to differenti-
ate malicious port usage from legitimate usage by using Hardware
Performance Counters. However, to the best of our knowledge,
static or dynamic analysis of contention-based side channels has
not been studied in the literature.

Port-independent code has also been suggested [3]. If the port
usage does not vary accordingly to the secret information, then
port-contention-based side channel attacks are ineffective. However,
such a solution requires to detect and correct all sensitive code in
existing sensible implementations, and does not apply to covert
channels.

At the operating system level, the scheduler can be aware of
SMT attacks, and provide more isolation between processes. For in-
stance, allowing highly sensitive operations, such as computations
depending on a secret, to run on a different physical core than other
applications could reduce the risk of leaking private information in
a side-channel attack. Similarly, only sharing hardware resources
between processes owned by the same user could provide more
isolation, especially in cloud environments.

Browsers. After the publications of microarchitectural attacks in-
side the JavaScript sandbox [18, 27], browser vendors studied miti-
gations against timing attacks. A popular solution in browsers is
to remove access to high-resolution timers. By not granting access
to a timer able to identify port contention, the side channel would
be mitigated. In particular, by disabling SharedArrayBuffer, the
threat posed by port contention side channels would be diminished.
However, this would only reduce the resolution of the side channel
and lower the bitrate of our covert channel, but not fully prevent
attacks, as other high-resolution timers have been implemented
[30, 33]. Browser vendors recently shifted their mitigation paradigm
from timer-based countermeasures to isolation-based countermea-
sures. However, proposed isolation-based countermeasures [29]
focus on memory isolation, and therefore do not apply to port
contention side channels.

7.3 Future Work
This work paves the way to future work on the threat posed by
contention-based side channels in the browser. First, the security
implications of WebAssembly are not properly evaluated yet, es-
pecially in the field of microarchitectural attacks. Studying the
compilation of WebAssembly and the resulting threats on microar-
chitecture would bring a more systematized approach to this field.
A benchmark, similar to Abel and Reineke’s uops.info [2] could
clarify the execution pipeline, from high level JavaScript code to na-
tive code, including WebAssembly instructions. Moreover, a more
generic study of contention-based side channel in the browser, not
only ports, could widen the attack surface to other types of victims
or other threat models. Finally, we presented a covert channel and
an artificial example exploiting port contention. Since our attack has
a temporal resolution at least in the order of Prime+Probe, we infer
it can be used as the fundamental building block of many future
attacks, e.g., on cryptographic implementations or monitoring.

8 Conclusion
We presented the first implementation of port contention in the
browser. We showed that port contention side channels have a
performance on-par or better than previous microarchitectural
side channels in the browser, and a more generic threat model.
We demonstrated the genericity of this attack by building several
types of exploits, including a 200 bit/s covert channel, as well as
a concrete example illustrating a side-channel attack with a spa-
tial resolution of 1024 instructions. We further demonstrated the
portability of web-based port contention by testing instructions
on different Intel CPUs, and we showed that our attack also works
in cross-browser and Host-to-VM settings, while being more re-
silient to noise than cache attacks. We consider port contention
side channels, and hardware contention side channels in general,
to be a generic class of attacks that can be used as a building block
for future microarchitectural attacks in the browser. This work
illustrates the difficulty to isolate the JavaScript sandbox from mi-
croarchitectural attacks, as currently deployed countermeasures
fail to mitigate contention-based side channels.

Acknowledgments
This work benefited from the support of Intel and of the project
ANR-19-CE39-0007MIAOUS of the FrenchNational ResearchAgency
(ANR).

Artifact Availability
To ensure the repeatability of our findings and assist defensive
research, we will publicly release all developed code and data ar-
tifacts. This includes the documented source code of PC-detector,
our covert channel, and the artificial example, as well as the data
and results of our experiments. In particular, we hope that public
access to PC-detector on a larger scale will help assess the whole
picture of the threat posed by port contention side channels.

References
[1] Andreas Abel and Jan Reineke. Tzcnt uops.info page. https://uops.info/html-

instr/TZCNT_R16_R16.html. Accessed: 2021-11-11.

[2] Andreas Abel and Jan Reineke. uops.info: Characterizing latency, throughput,
and port usage of instructions on intel microarchitectures. In ASPLOS, 2019.

[3] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar Pereida
García, and Nicola Tuveri. Port contention for fun and profit. In S&P, 2019.

[4] Jay M Berger. A note on error detection codes for asymmetric channels. Infor-
mation and control, 4(1):68–73, 1961.

[5] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner, Alessan-
dro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus. Smotherspectre:
Exploiting speculative execution through port contention. In CCS, 2019.

[6] Feng Cao, Martin Estert, Weining Qian, and Aoying Zhou. Density-based clus-
tering over an evolving data stream with noise. In Proceedings of the 2006 SIAM
international conference on data mining, 2006.

[7] MDN contributors. Cross-origin-embedder-policy. https://developer.mozilla.
org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Embedder-Policy. Accessed:
2021-19-11.

[8] MDN contributors. Cross-origin-opener-policy. https://developer.mozilla.org/en-
US/docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy. Accessed: 2021-19-
11.

[9] Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza Sadeghi. Hybcache:
Hybrid side-channel-resilient caches for trusted execution environments. In
USENIX Security Symposium, 2020.

[10] ECMA. Standard ecma-262. https://www.ecma-international.org/publications/
standards/Ecma-262.htm. Accessed: 2021-10-11.

[11] Daniel Genkin, Lev Pachmanov, Eran Tromer, and Yuval Yarom. Drive-by key-
extraction cache attacks from portable code. In ACNS, 2018.

[12] Google. Product status: Microarchitectural data sampling (mds). https://support.
google.com/faqs/answer/9330250?hl=en. Accessed: 2021-19-11.

[13] Google. V8 javascript engine. https://v8.dev/. Accessed: 2021-10-11.
[14] Ben Gras, Cristiano Giuffrida, Michael Kurth, Herbert Bos, and Kaveh Razavi.

Absynthe: Automatic blackbox side-channel synthesis on commodity microar-
chitectures. In NDSS, 2020.

[15] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano Giuffrida. Aslr
on the line: Practical cache attacks on the mmu. In NDSS, 2017.

[16] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowhammer. js: A
remote software-induced fault attack in javascript. In DIMVA, 2016.

[17] Richard W Hamming. Error detecting and error correcting codes. The Bell system
technical journal, 29(2):147–160, 1950.

[18] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al. Spectre
attacks: Exploiting speculative execution. In S&P, 2019.

[19] Jingfei Kong, Onur Aciiçmez, Jean-Pierre Seifert, and Huiyang Zhou. Hardware-
software integrated approaches to defend against software cache-based side
channel attacks. In HPCA, 2009.

[20] Michael Larabel. Openbsd disabling smt / hyper threading due to security con-
cerns. https://www.phoronix.com/scan.php?page=news_item&px=OpenBSD-
Disabling-SMT. Accessed: 2021-19-11.

[21] Moritz Lipp, Daniel Gruss, Michael Schwarz, David Bidner, Clémentine Maurice,
and Stefan Mangard. Practical keystroke timing attacks in sandboxed javascript.
In ESORICS, 2017.

[22] Fangfei Liu and Ruby B. Lee. Random fill cache architecture. In MICRO, 2014.
[23] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. Last-level

cache side-channel attacks are practical. In S&P, 2015.
[24] Clémentine Maurice, ManuelWeber, Michael Schwarz, Lukas Giner, Daniel Gruss,

Carlo Alberto Boano, Stefan Mangard, and Kay Römer. Hello from the other side:
SSH over robust cache covert channels in the cloud. In NDSS, 2017.

[25] MDN. Navigator.hardwareconcurrency. https://developer.mozilla.org/en-US/
docs/Web/API/Navigator/hardwareConcurrency. Accessed: 2021-19-11.

[26] Mozilla. Spidermonkey javascript engine. https://spidermofnkey.dev/. Accessed:
2021-10-11.

[27] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Angelos D.
Keromytis. The spy in the sandbox: Practical cache attacks in javascript and their
implications. In CCS, 2015.

[28] Antoon Purnal, Lukas Giner, Daniel Gruss, and Ingrid Verbauwhede. Systematic
analysis of randomization-based protected cache architectures. In S&P, 2021.

[29] Charles Reis, Alexander Moshchuk, and Nasko Oskov. Site isolation: Process
separation for web sites within the browser. In USENIX Security Symposium,
2019.

[30] Thomas Rokicki, Clémentine Maurice, and Pierre Laperdrix. Sok: In search of
lost time: A review of javascript timers in browsers. In EuroS&P, 2021.

[31] Michael Rushanan, David Russell, and Aviel D Rubin. Malloryworker: stealthy
computation and covert channels using web workers. In International Workshop
on Security and Trust Management. Springer, 2016.

[32] Gururaj Saileshwar and Moinuddin K. Qureshi. MIRAGE: mitigating conflict-
based cache attacks with a practical fully-associative design. In USENIX Security
Symposium, 2021.

[33] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan Mangard. Fan-
tastic timers and where to find them: High-resolution microarchitectural attacks
in javascript. In International Conference on Financial Cryptography and Data

https://uops.info/html-instr/TZCNT_R16_R16.html
https://uops.info/html-instr/TZCNT_R16_R16.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Embedder-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Embedder-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://support.google.com/faqs/answer/9330250?hl=en
https://support.google.com/faqs/answer/9330250?hl=en
https://v8.dev/
https://www.phoronix.com/scan.php?page=news_item&px=OpenBSD-Disabling-SMT
https://www.phoronix.com/scan.php?page=news_item&px=OpenBSD-Disabling-SMT
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/hardwareConcurrency
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/hardwareConcurrency
https://spidermofnkey.dev/

Security, 2017.
[34] Benjamin Semal, Konstantinos Markantonakis, Raja Naeem Akram, and Jan

Kalbantner. Leaky controller: cross-vm memory controller covert channel on
multi-core systems. In IFIP International Conference on ICT Systems Security and
Privacy Protection. Springer, 2020.

[35] Anatoly Shusterman, Ayush Agarwal, Sioli O’Connell, Daniel Genkin, Yossi
Oren, and Yuval Yarom. Prime+probe 1, javascript 0: Overcoming browser-based
side-channel defenses. In USENIX Security Symposium, 2021.

[36] Mohammadkazem Taram, Xida Ren, Ashish Venkat, and Dean Tullsen. Secsmt:
Securing SMT processors against contention-based covert channels. In USENIX
Security Symposium, 2022.

[37] Daniel Townley and Dmitry Ponomarev. SMT-COP: defeating side-channel
attacks on execution units in SMT processors. In PACT, 2019.

[38] Tom van Goethem and Wouter Joosen. One side-channel to bring them all and in
the darkness bind them: Associating isolated browsing sessions. In 11th USENIX
Workshop on Offensive Technologies (WOOT), 2017.

[39] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi
Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. RIDL: rogue
in-flight data load. In S&P, 2019.

[40] Pepe Vila and Boris Köpf. Loophole: Timing attacks on shared event loops in
chrome. In USENIX Security Symposium, 2017.

[41] W3C. Index of standardized webassembly instructions. https://webassembly.
github.io/spec/core/appendix/index-instructions.html. Accessed: 2021-19-11.

[42] W3C. Webassembly. https://webassembly.org/. Accessed: 2021-10-11.
[43] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A high resolution, low

noise, L3 cache side-channel attack. In USENIX Security Symposium, 2014.
[44] Yinqian Zhang and Michael K. Reiter. Düppel: retrofitting commodity operating

systems to mitigate cache side channels in the cloud. In CCS, 2013.

A Port Contention on Other WebAssembly
Instructions

Figures 8 to 10 show port contention on the followingWebAssembly
instructions: f64.floor, the pair f32.convert_i32_u and i32.
trunc_f32_u, and i64.rem_u. We can clearly distinguish the three
outcomes of a PC-detector usage:

• Figure 8 illustrates an instruction that do not cause con-
tention. The P1 and P5 distributions have a similar mean
and standard deviation, making them difficult to distinguish.
However, they are still distinguishable from the control ex-
periment.

• Figure 10 illustrates a pair of instructions causing contention
on P5. The distribution P5 has a higher mean than P1 and
the control experiment.

• Figure 9 illustrates an instruction causing contention on
P1. The distribution P1 has a higher mean than P5 and the
control experiment.

8 8.2 8.4 8.6 8.8 9 9.2
0
20
40
60
80
100

Execution time (ms)

Pe
rc
en
ta
ge

of
oc
cu
rr
en
ce
s

Control experiment
P1 contention
P5 contention

Figure 8: P1 contention experiment on f64.floor for
1 000 000 instructions.

20 25 30 35
0
20
40
60
80
100

Execution time (ms)

Pe
rc
en
ta
ge

of
oc
cu
rr
en
ce
s

Control experiment
P1 contention
P5 contention

Figure 9: P1 contention experiment on i64.rem_u for
1 000 000 instructions.

14 14.5 15 15.5 16 16.5 17 17.5 18 18.5
0
20
40
60
80
100

Execution time (ms)

Pe
rc
en
ta
ge

of
oc
cu
rr
en
ce
s

Control experiment
P1 contention
P5 contention

Figure 10: P5 contention experiment on paired
f32.convert_i32_u and i32.trunc_f32_u for 1 000 000
instructions.

https://webassembly.github.io/spec/core/appendix/index-instructions.html
https://webassembly.github.io/spec/core/appendix/index-instructions.html
https://webassembly.org/

	Abstract
	1 Introduction
	2 Background
	2.1 Microarchitecture and Port contention
	2.2 JavaScript and WebAssembly
	2.3 Timing attacks and microarchitectural attacks in the browser

	3 Web-Assembly-Based Port Contention
	4 PC-detector
	4.1 Description
	4.2 Results

	5 Side-channel Attack on Artificial Applications
	5.1 Description
	5.2 Results

	6 Covert channel
	6.1 Description
	6.2 Evaluation
	6.3 Cross-Browser Covert Channel Bandwidth Estimation

	7 Discussion
	7.1 Limitations
	7.2 Countermeasures
	7.3 Future Work

	8 Conclusion
	References
	A Port Contention on Other WebAssembly Instructions

