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Context

2015 2016 2018 2019 2020 2021 2022

Firefox ≤ 40

resolution:

∼10 ns

Firefox 41

resolution:

5 µs

Firefox 79

& COOP/COEP:

resolution:

20 µs

Firefox 60

resolution + jitter:
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∼10 ns

Chrome 44

resolution:

5 µs

Chrome 64

resolution + jitter:

100 µs
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resolution + jitter:

5 µs

Chrome 92

& COOP/COEP:

resolution:

5 µs and jitter,

SharedArrayBuffer enabled.
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Microarchitectural Side Channels

• Hardware optimizations are designed for

performance and not security.

• Attackers can exploit timing differences caused

by microarchitectural optimizations.

• Cache attacks are probably the most common.

• Applications to cryptography, covert channels,

breaking isolation.

Common prerequisite:

Execute code on shared hardware
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Microarchitectural attacks in the browsers: Threat model

• JavaScript or WebAssembly code are

client-side languages.

• The user visits a malicious website and

downloads the code.

• They execute it on their machine.

Prerequisite matched!
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Microarchitectural attacks in the browsers: Common Challenges

• Client-side languages are sandboxed:

� No native instructions.

� Oblivious to memory addresses.

� No access to the filesystem.

• Timers are restricted.

• High-level interpreted languages:

� JavaScript especially high level.

� WebAssembly offers more atomic operations.
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Research Questions

• With everchanging browsers and microarchitecture, how can we evaluate the

threat posed by side channels?

• What side channels can we implement in the browser?

• What information can we extract from these side channels?
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Talk Outline

This defense is composed of three major sections:

EuroS&P 2021 Systematic analysis of JavaScript timers.

AsiaCCS 2022 Port contention in the browser.

ESORICS 2022 Port contention without SMT.
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In Search of Lost Time: A Survey of

JavaScript Timers



Contributions of this Section

• Classification of browser-based timing attacks.

• Framework to automatically evaluate JavaScript timers.

• Longitudinal study of browsers’ timing-based security.
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Classification of JavaScript timing attacks

• Hardware-contention-based attacks;

• Transient execution attacks;

• Attacks based on system resources;

• Attacks based on browser resources.

Common prerequisite: Timers.
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JavaScript and Timers: A Complicated History

2015 2016 2018 2019 2020 2021 2022

Spectre
The spy

in the sandbox

Firefox ≤ 40

resolution:

∼10 ns

Firefox 41

resolution:

5 µs

Firefox 79

& COOP/COEP:

resolution:

20 µs

Firefox 60

resolution + jitter:

1 ms

Firefox 59

resolution: 2 ms

Firefox 57.0.4

resolution: 20 µs

Chrome ≤ 43

resolution:

∼10 ns

Chrome 44

resolution:

5 µs

Chrome 64

resolution + jitter:

100 µs

Chrome 72

resolution + jitter:

5 µs

Chrome 92

& COOP/COEP:

resolution:

5 µs and jitter,

SharedArrayBuffer enabled.

11



JavaScript and Timers: A Complicated History

2015 2016 2018 2019 2020 2021 2022

Spectre
The spy

in the sandbox

Firefox ≤ 40

resolution:

∼10 ns

Firefox 41

resolution:

5 µs

Firefox 79

& COOP/COEP:

resolution:

20 µs

Firefox 60

resolution + jitter:

1 ms

Firefox 59

resolution: 2 ms

Firefox 57.0.4

resolution: 20 µs

Chrome ≤ 43

resolution:

∼10 ns

Chrome 44

resolution:

5 µs

Chrome 64

resolution + jitter:

100 µs

Chrome 72

resolution + jitter:

5 µs

Chrome 92

& COOP/COEP:

resolution:

5 µs and jitter,

SharedArrayBuffer enabled.

11



JavaScript Timers

Built-in timers have a resolution ranging from 5-100 µs.

We have to create our auxiliary timers1:

• Clock Interpolation.

Patch: Add jitter.

• SharedArrayBuffer.

Patch: Disable SharedArrayBuffer.

1Schwarz et al., Financial Crypto 2017.
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Security vs. Practicality

• These features are needed for development.

• Browser vendors want less penalizing countermeasures:

Isolation-based.

• Site isolation and COOP/COEP:

� Each tab/origin runs in a different process.

� Different processes mean different address spaces.

• Spectre v1 is mitigated!

• Other attacks are not impacted.

• Timing-based countermeasures are obsolete:

� Grant higher resolution and less jitter.

� Reactivate SharedArrayBuffer.

What are the security implications of reintroducing

high-resolution timers?
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Automated Framework

Automated framework to evaluate JavaScript timers using Sele-

nium.

Works on Chrome and Firefox, including past and future versions.

Our goal is that this analysis can be helpful at this point and in

the future.

The code is available here:

https://github.com/thomasrokicki/in-search-of-lost-time
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Framework behaviour

For each timer, we evaluate:

Resolutione overhead Smallest operation a timer can measure.

Performance overhead Time it takes to make the measurement.

You can find more in-depth details of the experiments and results in the full paper.
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Some perspective

On Firefox 88 (2021) vs. Firefox 78 (2018), an attacker can:

• Create a cache covert channel 800,000 faster.

60bps 1kbps 1Mbps 50Mbps

FF78

FF88

Ideal bandwidth

B
ro

w
se

r

• Mount cache attacks in a matter of seconds vs tens of minutes

Timing attacks are more of a threat than 4 years ago.
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Port Contention Goes Portable



Background: Execution pipeline

• Shared by all threads on the physical

core.

• Instructions are decomposed in

micro-operations (µops).

• The decomposition is deterministic.

• µops are dispatched to specialized

execution units through CPU ports.

Thread 1 Decoder Thread 2
fetch fetch

µops

Scheduler

Execution Engine

P0 P1 P2 P3 P4 P5 P6 P7

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop
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Background: Port contention2

Attacker

Victim

Attacker

instr

Scheduler

Port 1

A

instr

A

instr

Execution

engine

Attacker

Victim

Attacker

instr

Victim

instr

Scheduler

Port 1

A

instr

V

instr

A

instr

Execution

engine

No Contention All the attacker

instructions are executed in a

row, fast execution time.

Contention Attacker instructions are

delayed, slow execution

time.

2Aldaya et al., S&P 2019 18



C1 - Core control

JavaScript does not have core control.

The scheduler tries to balance the workload of

physical cores.

Solution: Exploit JavaScript multithreading and

work with the scheduler.
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C2 - High-resolution timers

Baseline JavaScript timers are not sufficient to mount our

attacks.

We use auxiliary timers based on SharedArrayBuffer.

Puts more constraints on core control.
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C3 - Port usage of WebAssembly

WebAssembly is a high-level language.

We need to find out the port usage of WebAssembly instructions.

So we built PC-Detector

Test the contention of 244 WebAssembly instructions with our knowledge of native

port usage.
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PC-Detector - Description

Control ion on Port x The web script runs alone in the browser.

Contention on Port x The web script runs while we create Px contention.
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(a) Result for instruction f64.floor
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(b) Result for instruction i64.rem u
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PC-Detector - Results

We tested over 200 different instructions.

• 80 instructions creating contention.

� Some create more timing difference.

� i64.rem u seems to cause the most difference in timing.

• Contention on 4 ports: 0, 1, 5, and 6.

� More threat surface!

� Ports 2 and 3 have the exact same usage, so execution is always parallelized.

23



Side-Channel Artificial Example - Description

Generic example of a side channel attack. Web user attacks a native victim and

extracts a secret.

Victim

secret == 0

POPCNT %r8,%r8

POPCNT %r8,%r8

...

POPCNT %r8,%r8

POPCNT %r8,%r8

Contention on Port 1

secret == 1

VPBROADCASTD %xmm0, %ymm0

VPBROADCASTD %xmm0, %ymm0

...

VPBROADCASTD %xmm0, %ymm0

VPBROADCASTD %xmm0, %ymm0

Contention on Port 5

Monitors port usage
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Side-Channel Artificial Example - Results
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Figure 3: Secret key: 1101001.

• Able to detect 1024 native instructions in a

single trace.

• Spatial resolution similar to web-based cache

attacks (Prime+Probe).

• Timers are the main bottleneck.
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Covert Channel

Composed of two components:

• Native: C/x86 sender.

• Web: JavaScript/WebAssembly receiver.

Applications:

• Exchanging cookies/tracking information.

• Extracting native data.

Hardware:

CPU Ports

OS

User applications Receiver

JS sandbox

browser

Sender
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Covert Channel - Physical layer
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Figure 4: Transmitted square signal

• Sending a 1-bit by creating contention

on Port 1

• Receiving bits by measuring execution

times of Port 1 instructions

• Fixed bit duration of tbit
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Covert Channel - Data-Link layer

Data is separated in frames:

• Sequence number to handle

synchronization

• Error-detecting code for bit

insertion/deletion

Simple request-to-send protocol to handle

lost frames

Frame starts are detected using a density

clustering algorithm.

Sender Receiver

Request 0

Data 0

Request 1

Request 1

Data 1

Request 1

Data 1

×

×
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Covert Channel - Evaluation

We found tbit = 1 ms to be best.

On a quiet system, we obtain the following results:

• 200 bit/s of effective data (Best bandwidth for

a web-based covert channel!)

• 6% of frame loss

We evaluated the covert channel with noise:

• stress -m 2: 170 bit/s

• stress -m 3: 25 bit/s

Due to the same-core nature of port contention.
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More Covert Channels

VM-to-host

Hardware:

CPU Ports

OS

User applications Receiver

JS sandbox

browser

Sender

Virtual machine

80 bit/s bandwidth.

Cross-browser

Hardware:

CPU Ports

OS

User applications Receiver

JS sandbox

browser

Sender

JS sandbox

browser

200 bit/s bandwidth, across browsers!
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Perspective on Web Port Contention

• First implementation of port contention in the browser.

• Fastest covert channel existing in the browser.

• High spatial resolution.

• Breaks the isolation of browser: cross-origin communication is possible, even

through virtualized environments.
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Sequential Port Contention



Port Contention and SMT

Port contention attacks rely on the attacker and victim sharing a hardware component.

They are highly dependent on SMT.

Countermeasures to SMT attacks are starting to appear:

• Disable SMT.

• Dynamic Sharing.

Can we create port contention without SMT?
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Sequential Port Contention

We introduce Sequential Port Contention.

Exploit parallelism at the instruction level.

Creates contention on ports and exploits it without

SMT.
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Port Contention Without SMT - Concept

instr1 instr1 instr1 instr2 instr2 instr2

(a) Grouped

instr1 instr1 instr1instr2 instr2 instr2

(b) Interleaved

• Both experiments have the same number of instructions.

• Will they have a similar execution time?
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Results - Ratio of Execution time
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Application to Fingerprinting - Idea

• CPU generations bring changes to the

microarchitecture.

• Instructions can have different port usages

between generations.

• If we can determine the port usage of these

instructions from the web, we can guess the

generation!

• Consolidate software attributes for

fingerprinting.
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Application to Fingerprinting - Framework

We need to find distinguishers, i.e., pairs of instructions

that:

• Exhibit different contention on different

generations;

• Exhibit similar contention on different CPUs of the

same generation.

Problem: We do not know how our WebAssembly in-

structions are translated.

We extended PC-detector to test 458 pairs of instruc-

tions for distinguishers, and found 30.
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Application to Fingerprinting - Classifier, Training, and Evaluation

• Once we have these distinguishers, we create

generation fingerprints, i.e., the behavior of the

distinguishers for a given generation.

• We use it to train a k-NN model to classify

unknown CPUs.

• We created a website to get these fingerprints:

https://fp-cpu-gen.github.io/fp-cpu-gen

Feel free to try and send us results!
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Application to Fingerprinting - Results

SKL
CFL

HSL
SNB

TGL
ZEN

SKL

CFL

HSL

SNB

TGL

ZEN

1 0 0 0 0 0

0.056 0.94 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0.17 0 0 0.83 0

0 0 0 0 0 1

• Evaluation on 50 different CPUs, spanning

13 generations.

• Includes Intel CPUs and AMD.

• 92% accuracy.

• Highly stable and resistant to noise.
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Perspective on Sequential Port Contention

• Threat surface extension for port contention.

• Applications to browser fingerprinting.

• Highly resistant to noise.

• Maybe other SMT attacks can be leveraged with instruction-level parallelism?
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Conclusion and Future Work



Future Work

• We have many new side channels to discover.

� Exploit already existing native side channels.

� Change the attack paradigm to discover new threats.

• Find new directions for browser countermeasures.

� Countermeasures at the application level.

� Enforcing detection on top of prevention.

• Bringing automation to the browser.

� Automated side channel discovery.

� Systematized understanding of JavaScript engine.

• Hardware browser fingerprinting is promising.

� As a complement to software fingerprinting.

� Exploiting imperfection can lead to unique fingerprints.
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