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Background: Microarchitectural attacks

Exploit subtle timing differences caused by the

microarchitecture.

Cache attacks are the most famous, but most

microarchitectural optimizations are targeted.

Here: CPU Ports
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Background: SMT

Simultaneous computation (Also called Hyper-

Threading).

• Physical cores are shared in several (often 2)

logical cores.

• Abstraction at the OS level.

• Hardware resources are shared between

logical cores.
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Background: Execution pipeline

• Instructions are decomposed in

micro-operations (µops) to optimize

Out-of-Order computation.

• The decomposition of instructions into

µops is deterministic.

• µops are dispatched to specialized

execution units through CPU ports.
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Background: Port contention1
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1Aldaya et al. , Port Contention for Fun and Profit, S&P, 2019
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Background: Port contention in web browsers2

• Port contention is also implementable in

browsers with WebAssembly.

• Huge threat surface but restricted environment.

• We proposed a framework to determine the

port usage of WebAssembly instructions.

• Spatial resolution on par with Prime+Probe.

Victim
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...
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2Rokicki et al. , Port contention goes portable, AsiaCCS, 2021
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Port Contention and SMT

Port contention attacks rely on the attacker and victim sharing a hardware component.

They are highly dependent on SMT.

Countermeasures to SMT-attacks are starting to appear:

Disable SMT (RedHat) Dynamic Sharing 3.

Can we create port contention without SMT?

3Taram et al. , SecSMT: Securing SMT Processors against Contention-Based Covert Channels,

USENIX 22
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Sequential Port Contention

We introduce Sequential Port Contention.

Exploit parallelism at instruction level.

Creates contention on ports and exploits it without SMT.
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Port Contention Without SMT - Concept

instr1 instr1 instr1 instr2 instr2 instr2

(a) Grouped

instr1 instr1 instr1instr2 instr2 instr2

(b) Interleaved
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Port Contention Without SMT - Concept

instr1 instr1 instr1 instr2 instr2 instr2

Cycle 5

Execution is never parallelized

9



Port Contention Without SMT - Concept

Instructions use the same ports

instr1 instr1 instr1instr2 instr2 instr2

Instructions use different ports

instr1 instr1 instr1instr2 instr2 instr2

Cycle 0

9



Port Contention Without SMT - Concept

Instructions use the same ports

instr1 instr1 instr1instr2 instr2 instr2

Instructions use different ports

instr1 instr1 instr1instr2 instr2 instr2

Cycle 1

9



Port Contention Without SMT - Concept

Instructions use the same ports

instr1 instr1 instr1instr2 instr2 instr2

Instructions use different ports

instr1 instr1 instr1instr2 instr2 instr2

Cycle 2

9



Port Contention Without SMT - Concept

Instructions use the same ports

instr1 instr1 instr1instr2 instr2 instr2

Instructions use different ports

instr1 instr1 instr1instr2 instr2 instr2

Cycle 3

9



Port Contention Without SMT - Concept

Instructions use the same ports

instr1 instr1 instr1instr2 instr2 instr2

The instructions create contention at

the port level:

slower execution

Instructions use different ports

instr1 instr1 instr1instr2 instr2 instr2

The execution is paralellized at port

level:

faster execution
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Results - Execution time

100 101 102 103 104 105
0

1

2

3

4
·106

Loop interations n

E
xe

cu
ti

on
ti

m
e

(C
yc

le
s)

grouped
interleaved

Figure 8: Execution time for grouped vs. interleaved with different ports.
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Results - Ratio of Execution time

We compute the ratio ρgrouped/interleaved .
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Figure 9: ρgrouped/interleaved .

11



Web

Same idea but in WebAssembly.
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Ratio is lower due to lowest-resolution timers / less control on port usage.

Allows for way more portability!

12



Web

Same idea but in WebAssembly.

100 101 102 103 104 105 106
0.8

1

1.2

1.4

Loop iterations n

R
at

io
ρ

Ratio is lower due to lowest-resolution timers / less control on port usage.

Allows for way more portability!

12



Web

Same idea but in WebAssembly.

100 101 102 103 104 105 106
0.8

1

1.2

1.4

Loop iterations n

R
at

io
ρ

Ratio is lower due to lowest-resolution timers / less control on port usage.

Allows for way more portability! 12



Application to fingerprint - Idea

• CPU generations bring changes to the

microarchitecture.

• Instructions can have different port

usages between generations.

• If we can determine the port usage of

these instructions from the web, we

can guess the generation!

• Consolidate software attributes for

fingerprinting4.

4Trampert et al. , Browser-based CPU Fingerprinting, Esorics 2022
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Application to fingerprint - Framework

We need to find distinguishers, i.e., pairs of instructions

that:

• Exhibit different contention on different

generations;

• Exhibit similar contention on different CPUs of the

same generation.

Problem: We do not know how our WebAssembly in-

structions are translated.

We built a framework, testing 458 pairs of instructions

for distinguishers and found 30.
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Application to fingerprint - Classifier, Training and Evaluation

• Once we have these distinguishers, we create

generation fingerprints, ie the behavior of the

distinguishers for a given generation.

• We use it to train a k-NN model to classify

unknown CPUs.

• We created a website to get these fingerprints:

https://fp-cpu-gen.github.io/fp-cpu-gen

Feel free to try and send us results!
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Application to fingerprint - Results

SKL
CFL

HSL
SNB

TGL
ZEN

SKL

CFL

HSL

SNB

TGL

ZEN

1 0 0 0 0 0

0.056 0.94 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0.17 0 0 0.83 0

0 0 0 0 0 1

• Evaluation on 50 different CPUs, spanning

13 generations.

• Includes Intel CPUs and AMD.

• 92% accuracy.

• Highly stable and resistant to noise.
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Countermeasures

Software Diversification : JavaScript engine can

reorder code while keeping functionality or

add fences to the output.

Performance Counters Detection : We can detect

when sequential port contention occurs by

measuring backend-bound execution.
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Conclusion

• Threat surface extension for port contention.

• Applications to browser fingerprinting.

• Highly resistant to noise.

• Maybe other SMT attacks can be leveraged with instruction-level parallelism?
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Questions?

Contact me here: thomas.rokicki@irisa.fr

Feel free to read the paper for more technical details!

Find the code here:

https://github.com/MIAOUS-group/port-contention-without-smt
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