
CPU Port Contention Without SMT

Thomas Rokicki - Univ Rennes, CNRS, IRISA

Clémentine Maurice - Univ Lille, CNRS, Inria

Michael Schwarz - CISPA Helmholtz Center for Information Security

ESORICS 2022 - 24/09/2022

1



Background: Microarchitectural attacks

Exploit subtle timing differences caused by the

microarchitecture.

Cache attacks are the most famous, but most

microarchitectural optimizations are targeted.

Here: CPU Ports

L1 Instruction Cache

iTLB

Branch

Predictor

µop cache

Instruction Fetch

Instruction Queue

Decoder

Mux

Allocation Queue (IDQ)

ReOrder Buffer

Scheduler

Execution Engine

P0 P1 P5 P6P2 P3 P4 P7

int alu

int div

vect alu

vect mul

aes

int alu

int mul

vect alu

vect mul

agu

load

agu

load

store int alu

vect alu

lea

shuffle

alu

branch

agu

Load Buffer Store Buffer

L1 Data Cache

Data TLB

Unified STLB

L2 Cache

LFB

2



Background: Microarchitectural attacks

Exploit subtle timing differences caused by the

microarchitecture.

Cache attacks are the most famous, but most

microarchitectural optimizations are targeted.

Here: CPU Ports

L1 Instruction Cache

iTLB

Branch

Predictor

µop cache

Instruction Fetch

Instruction Queue

Decoder

Mux

Allocation Queue (IDQ)

ReOrder Buffer

Scheduler

Execution Engine

P0 P1 P5 P6P2 P3 P4 P7

int alu

int div

vect alu

vect mul

aes

int alu

int mul

vect alu

vect mul

agu

load

agu

load

store int alu

vect alu

lea

shuffle

alu

branch

agu

Load Buffer Store Buffer

L1 Data Cache

Data TLB

Unified STLB

L2 Cache

LFB

2



Background: SMT

Simultaneous computation (Also called Hyper-

Threading).

• Physical cores are shared in several (often 2)

logical cores.

• Abstraction at the OS level.

• Hardware resources are shared between

logical cores.

3



Background: SMT

Simultaneous computation (Also called Hyper-

Threading).

• Physical cores are shared in several (often 2)

logical cores.

• Abstraction at the OS level.

• Hardware resources are shared between

logical cores.

3



Background: Execution pipeline

• Instructions are decomposed in

micro-operations (µops) to optimize

Out-of-Order computation.

• The decomposition of instructions into

µops is deterministic.

• µops are dispatched to specialized

execution units through CPU ports.

Thread 1 Decoder Thread 2
fetch fetch

µops

scheduler

Execution engine

P0 P1 P2 P3 P4 P5 P6 P7

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

4



Background: Port contention1

Attacker

Victim

Attacker

instr

Scheduler

Port 1

A

instr

A

instr

Execution

engine

Attacker

Victim

Attacker

instr

Victim

instr

Scheduler

Port 1

A

instr

V

instr

A

instr

Execution

engine

No Contention All the attacker

instructions are executed in a

row, fast execution time.

Contention Attacker instructions are

delayed, slow execution

time.

1Aldaya et al. , Port Contention for Fun and Profit, S&P, 2019

5



Background: Port contention in web browsers2

• Port contention is also implementable in

browsers with WebAssembly.

• Huge threat surface but restricted environment.

• We proposed a framework to determine the

port usage of WebAssembly instructions.

• Spatial resolution on par with Prime+Probe.

Victim

secret == 0

POPCNT %r8,%r8

POPCNT %r8,%r8

...

POPCNT %r8,%r8

POPCNT %r8,%r8

Contention on Port 1

secret == 1

VPBROADCASTD %xmm0, %ymm0

VPBROADCASTD %xmm0, %ymm0

...

VPBROADCASTD %xmm0, %ymm0

VPBROADCASTD %xmm0, %ymm0

Contention on Port 5

2Rokicki et al. , Port contention goes portable, AsiaCCS, 2021

6



Port Contention and SMT

Port contention attacks rely on the attacker and victim sharing a hardware component.

They are highly dependent on SMT.

Countermeasures to SMT-attacks are starting to appear:

Disable SMT (RedHat) Dynamic Sharing 3.

Can we create port contention without SMT?

3Taram et al. , SecSMT: Securing SMT Processors against Contention-Based Covert Channels,

USENIX 22

7



Port Contention and SMT

Port contention attacks rely on the attacker and victim sharing a hardware component.

They are highly dependent on SMT.

Countermeasures to SMT-attacks are starting to appear:

Disable SMT (RedHat)

Dynamic Sharing 3.

Can we create port contention without SMT?

3Taram et al. , SecSMT: Securing SMT Processors against Contention-Based Covert Channels,

USENIX 22

7



Port Contention and SMT

Port contention attacks rely on the attacker and victim sharing a hardware component.

They are highly dependent on SMT.

Countermeasures to SMT-attacks are starting to appear:

Disable SMT (RedHat) Dynamic Sharing 3.

Can we create port contention without SMT?

3Taram et al. , SecSMT: Securing SMT Processors against Contention-Based Covert Channels,

USENIX 22

7



Port Contention and SMT

Port contention attacks rely on the attacker and victim sharing a hardware component.

They are highly dependent on SMT.

Countermeasures to SMT-attacks are starting to appear:

Disable SMT (RedHat) Dynamic Sharing 3.

Can we create port contention without SMT?

3Taram et al. , SecSMT: Securing SMT Processors against Contention-Based Covert Channels,

USENIX 22

7



Sequential Port Contention

We introduce Sequential Port Contention.

Exploit parallelism at instruction level.

Creates contention on ports and exploits it without SMT.

8



Sequential Port Contention

We introduce Sequential Port Contention.

Exploit parallelism at instruction level.

Creates contention on ports and exploits it without SMT.

8



Sequential Port Contention

We introduce Sequential Port Contention.

Exploit parallelism at instruction level.

Creates contention on ports and exploits it without SMT.

8



Port Contention Without SMT - Concept

instr1 instr1 instr1 instr2 instr2 instr2

(a) Grouped

instr1 instr1 instr1instr2 instr2 instr2

(b) Interleaved

9



Port Contention Without SMT - Concept

instr1 instr1 instr1 instr2 instr2 instr2

Cycle 0

9



Port Contention Without SMT - Concept

instr1 instr1 instr1 instr2 instr2 instr2

Cycle 1

9



Port Contention Without SMT - Concept

instr1 instr1 instr1 instr2 instr2 instr2

Cycle 2

9



Port Contention Without SMT - Concept

instr1 instr1 instr1 instr2 instr2 instr2

Cycle 3

9



Port Contention Without SMT - Concept

instr1 instr1 instr1 instr2 instr2 instr2

Cycle 4

9



Port Contention Without SMT - Concept

instr1 instr1 instr1 instr2 instr2 instr2

Cycle 5

Execution is never parallelized

9



Port Contention Without SMT - Concept

Instructions use the same ports

instr1 instr1 instr1instr2 instr2 instr2

Instructions use different ports

instr1 instr1 instr1instr2 instr2 instr2

Cycle 0

9



Port Contention Without SMT - Concept

Instructions use the same ports

instr1 instr1 instr1instr2 instr2 instr2

Instructions use different ports

instr1 instr1 instr1instr2 instr2 instr2

Cycle 1

9



Port Contention Without SMT - Concept

Instructions use the same ports

instr1 instr1 instr1instr2 instr2 instr2

Instructions use different ports

instr1 instr1 instr1instr2 instr2 instr2

Cycle 2

9



Port Contention Without SMT - Concept

Instructions use the same ports

instr1 instr1 instr1instr2 instr2 instr2

Instructions use different ports

instr1 instr1 instr1instr2 instr2 instr2

Cycle 3

9



Port Contention Without SMT - Concept

Instructions use the same ports

instr1 instr1 instr1instr2 instr2 instr2

The instructions create contention at

the port level:

slower execution

Instructions use different ports

instr1 instr1 instr1instr2 instr2 instr2

The execution is paralellized at port

level:

faster execution

9



Results - Execution time

100 101 102 103 104 105
0

1

2

3

4
·106

Loop interations n

E
xe

cu
ti

on
ti

m
e

(C
yc

le
s)

grouped
interleaved

Figure 8: Execution time for grouped vs. interleaved with different ports.

10



Results - Ratio of Execution time

We compute the ratio ρgrouped/interleaved .

100 101 102 103 104 105

1

1.5

2

Loop iterations n

R
at

io
ρ

Figure 9: ρgrouped/interleaved .

11



Web

Same idea but in WebAssembly.

100 101 102 103 104 105 106
0.8

1

1.2

1.4

Loop iterations n

R
at

io
ρ

Ratio is lower due to lowest-resolution timers / less control on port usage.

Allows for way more portability!

12



Web

Same idea but in WebAssembly.

100 101 102 103 104 105 106
0.8

1

1.2

1.4

Loop iterations n

R
at

io
ρ

Ratio is lower due to lowest-resolution timers / less control on port usage.

Allows for way more portability!

12



Web

Same idea but in WebAssembly.

100 101 102 103 104 105 106
0.8

1

1.2

1.4

Loop iterations n

R
at

io
ρ

Ratio is lower due to lowest-resolution timers / less control on port usage.

Allows for way more portability! 12



Application to fingerprint - Idea

• CPU generations bring changes to the

microarchitecture.

• Instructions can have different port

usages between generations.

• If we can determine the port usage of

these instructions from the web, we

can guess the generation!

• Consolidate software attributes for

fingerprinting4.

4Trampert et al. , Browser-based CPU Fingerprinting, Esorics 2022

13



Application to fingerprint - Idea

• CPU generations bring changes to the

microarchitecture.

• Instructions can have different port

usages between generations.

• If we can determine the port usage of

these instructions from the web, we

can guess the generation!

• Consolidate software attributes for

fingerprinting4.

4Trampert et al. , Browser-based CPU Fingerprinting, Esorics 2022

13



Application to fingerprint - Idea

• CPU generations bring changes to the

microarchitecture.

• Instructions can have different port

usages between generations.

• If we can determine the port usage of

these instructions from the web, we

can guess the generation!

• Consolidate software attributes for

fingerprinting4.

4Trampert et al. , Browser-based CPU Fingerprinting, Esorics 2022

13



Application to fingerprint - Idea

• CPU generations bring changes to the

microarchitecture.

• Instructions can have different port

usages between generations.

• If we can determine the port usage of

these instructions from the web, we

can guess the generation!

• Consolidate software attributes for

fingerprinting4.

4Trampert et al. , Browser-based CPU Fingerprinting, Esorics 2022

13



Application to fingerprint - Framework

We need to find distinguishers, i.e., pairs of instructions

that:

• Exhibit different contention on different

generations;

• Exhibit similar contention on different CPUs of the

same generation.

Problem: We do not know how our WebAssembly in-

structions are translated.

We built a framework, testing 458 pairs of instructions

for distinguishers and found 30.

14



Application to fingerprint - Framework

We need to find distinguishers, i.e., pairs of instructions

that:

• Exhibit different contention on different

generations;

• Exhibit similar contention on different CPUs of the

same generation.

Problem: We do not know how our WebAssembly in-

structions are translated.

We built a framework, testing 458 pairs of instructions

for distinguishers and found 30.

14



Application to fingerprint - Framework

We need to find distinguishers, i.e., pairs of instructions

that:

• Exhibit different contention on different

generations;

• Exhibit similar contention on different CPUs of the

same generation.

Problem: We do not know how our WebAssembly in-

structions are translated.

We built a framework, testing 458 pairs of instructions

for distinguishers and found 30.

14



Application to fingerprint - Classifier, Training and Evaluation

• Once we have these distinguishers, we create

generation fingerprints, ie the behavior of the

distinguishers for a given generation.

• We use it to train a k-NN model to classify

unknown CPUs.

• We created a website to get these fingerprints:

https://fp-cpu-gen.github.io/fp-cpu-gen

Feel free to try and send us results!

15

https://fp-cpu-gen.github.io/fp-cpu-gen


Application to fingerprint - Classifier, Training and Evaluation

• Once we have these distinguishers, we create

generation fingerprints, ie the behavior of the

distinguishers for a given generation.

• We use it to train a k-NN model to classify

unknown CPUs.

• We created a website to get these fingerprints:

https://fp-cpu-gen.github.io/fp-cpu-gen

Feel free to try and send us results!

15

https://fp-cpu-gen.github.io/fp-cpu-gen


Application to fingerprint - Classifier, Training and Evaluation

• Once we have these distinguishers, we create

generation fingerprints, ie the behavior of the

distinguishers for a given generation.

• We use it to train a k-NN model to classify

unknown CPUs.

• We created a website to get these fingerprints:

https://fp-cpu-gen.github.io/fp-cpu-gen

Feel free to try and send us results!

15

https://fp-cpu-gen.github.io/fp-cpu-gen


Application to fingerprint - Results

SKL
CFL

HSL
SNB

TGL
ZEN

SKL

CFL

HSL

SNB

TGL

ZEN

1 0 0 0 0 0

0.056 0.94 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0.17 0 0 0.83 0

0 0 0 0 0 1

• Evaluation on 50 different CPUs, spanning

13 generations.

• Includes Intel CPUs and AMD.

• 92% accuracy.

• Highly stable and resistant to noise.

16



Countermeasures

Software Diversification : JavaScript engine can

reorder code while keeping functionality or

add fences to the output.

Performance Counters Detection : We can detect

when sequential port contention occurs by

measuring backend-bound execution.

17



Conclusion

• Threat surface extension for port contention.

• Applications to browser fingerprinting.

• Highly resistant to noise.

• Maybe other SMT attacks can be leveraged with instruction-level parallelism?

18



Conclusion

• Threat surface extension for port contention.

• Applications to browser fingerprinting.

• Highly resistant to noise.

• Maybe other SMT attacks can be leveraged with instruction-level parallelism?

18



Conclusion

• Threat surface extension for port contention.

• Applications to browser fingerprinting.

• Highly resistant to noise.

• Maybe other SMT attacks can be leveraged with instruction-level parallelism?

18



Conclusion

• Threat surface extension for port contention.

• Applications to browser fingerprinting.

• Highly resistant to noise.

• Maybe other SMT attacks can be leveraged with instruction-level parallelism?

18



Questions?

Contact me here: thomas.rokicki@irisa.fr

Feel free to read the paper for more technical details!

Find the code here:

https://github.com/MIAOUS-group/port-contention-without-smt

19



Credits

Credits for images:

• Vecteezy.com

• Veryicon.com

20


