Port Contention Goes Portable: Port Contention
Side-Channels in Web Browsers

Thomas Rokicki - Univ Rennes, CNRS, IRISA
Clémentine Maurice - Univ Lille, CNRS, Inria

Marina Botvinnik - Ben-Gurion University of the Negev
Yossi Oren - Ben-Gurion University of the Negev

AsiaCCS 2022 - June 2nd 2022

Background: Microarchitectural attacks

Front End

Exploit subtle timing differences caused by the
microarchitecture.

Cache attacks are the most famous, but most
microarchitectural optimizations are targeted.

‘1.“,,,.
==

Wi*iiiii

Execution Engine

Background: Microarchitectural attacks

Front End

Exploit subtle timing differences caused by the
microarchitecture.

Cache attacks are the most famous, but most
microarchitectural optimizations are targeted.

_ﬁmmm
==

Mh**““‘
Here: CPU Ports

Execution Engine

Background: Hyperthreading

Simultaneous computation technology of Intel.

o Physical cores are shared in several (often 2)
logical cores

e Abstraction at the OS level

© o

Background: Hyperthreading

Simultaneous computation technology of Intel.
o Physical cores are shared in several (often 2)
logical cores
e Abstraction at the OS level

e Hardware resources are shared between
logical cores

Background: Execution pipeline

. . fetch fetch
o Instructions are decomposed in Thread 1— Decoder “—Thread 2
micro-operations (uops) to optimize s
Out-of-Order computation scheduler

e The decomposition of instructions into
pops is deterministic

o pops are dispatched to specialized
execution units through CPU ports

E

xecution engine

Background: Port contention®
instr

Scheduler

No Contention All the attacker

L.Execqtion
engine instructions are executed in

- a row, fast execution time
|Attacker

Scheduler

Contention Attacker instructions are

delayed, slow execution

.| Execution
engine

time

m
instr

'Aldaya et al. , Port Contention for Fun and Profit, S&P, 2019

Port contention prerequisites

e Attacker code must run on the victim's hardware
o Attacker and victim must be on the same physical core

o Attacker must have access to high-resolution timers

Background: JavaScript and WebAssembly

JS

e Runs code on the client’s hardware. ® Runs code on the client’s hardware

Compiled from another language

o JIT compilation.
e Sandboxed e Sandboxed

Smaller, more atomic instructions

Threat model

Client side languages run on the client’s hardware.

We can run port contention attacks on the victim's hardware

Threat model

Client side languages run on the client’'s hardware.
We can run port contention attacks on the victim's hardware

Malicious website or advertisement

C1 - Core control

JavaScript does not have core control

C1 - Core control

JavaScript does not have core control

The scheduler tries to balance the workload of
physical cores.

C1 - Core control

JavaScript does not have core control

The scheduler tries to balance the workload of
physical cores.

Solution: Exploit JavaScript multithreading and
work with the scheduler

C2 - high-resolution timers

To prevent timing attacks, browsers removed access to
JavaScript high-resolution timers, and added jitter to the mea-
surements.

10

C2 - high-resolution timers

To prevent timing attacks, browsers removed access to
JavaScript high-resolution timers, and added jitter to the mea-

surements.
Build auxiliary timers with a resolution of several nanosec-
onds?.

2Schwarz et al. , Fantastic timers and where to find them, Financial Cryptography, 2017
Rokicki et al. , Sok: In search of lost time: A review of javascript timers in browsers, EuroS&P, 2021

10

C2 - high-resolution timers

To prevent timing attacks, browsers removed access to
JavaScript high-resolution timers, and added jitter to the mea-
surements.

Build auxiliary timers with a resolution of several nanosec-
onds?.

For most experiments in this paper, we use a timer based on
SharedArrayBuffer.

2Schwarz et al. , Fantastic timers and where to find them, Financial Cryptography, 2017
Rokicki et al. , Sok: In search of lost time: A review of javascript timers in browsers, EuroS&P, 2021

10

We don't know the port usage of WebAssembly instructions.
So we built PC-Detector

Test the contention of 244 WebAssembly instructions with our knowledge of native
port usage.

11

PC-Detector - Description

PC-Detector is also composed of a native spammer and a web tester.

For each WebAssembly instruction, we run the following experiments:

Control : The web script runs alone in the browser

Contention on Port x : The web script runs while the native component repeatedly
calls an instruction creating contention on Port x

We test all instructions with ports 0,1,(2,3),5 and 6.

12

PC-Detector - Results

We tested over 200 different instructions.

e 80 instructions creating contention
e 4 ports: 0,1, 5 and 6

e Best instruction is 164.rem_u

13

Side-Channel Artificial Example - Description

Generic example of a side channel attack. Web sender attacks a native victim and
extracts a secret.

Victim
secret == secret ==
l Monitors port usage
POPCNT %r8,%r8 VPBROADCASTD %xmm0, %ymmO
POPCNT %r8,%r8 VPBROADCASTD %xmm0, %ymmO
POPCNT %r8,%r8 VPBROADCASTD %xmm0, %ymmO
POPCNT %r8,%r8 VPBROADCASTD %xmm0, %ymmO
Contention on Port 1 Contention on Port 5

14

Side-Channel Artificial Example - Description

Generic example of a side channel attack. Web sender attacks a native victim and
extracts a secret.

Victim
secret == secret == 1
J Contention on Port 1
POPCNT %r8,%r8 VPBROADCASTD %xmm0, %ymmO
POPCNT %r8,%r8 VPBROADCASTD %xmm0, %ymmO
POPCNT %r8,%r8 VPBROADCASTD %xmm0, %ymmO Secret is 0!
POPCNT %r8,%r8 VPBROADCASTD %xmm0, %ymmO

14

Side-Channel Artificial Example - Description

Generic example of a side channel attack. Web sender attacks a native victim and
extracts a secret.

Victim
secret == secret ==
[1 Contention on Port 5
POPCNT %r8,%r8 VPBROADCASTD %xmm0, %ymmO
POPCNT %r8,%r8 VPBROADCASTD %xmm0, %ymmO
POPCNT %r8,%r8 VPBROADCASTD %xmm0O, %ymmO Secret is 1!
POPCNT %r8,%r8 VPBROADCASTD %xmm0O, %ymmO

14

Side-Channel Artificial Example - Results

Execution time (increments)

0 10 20 30 40
Measurements (nbjnstr = 10)

Figure 1: Secret key: 1101001.

o Able to detect 1024 native instructions in a
single trace

15

Side-Channel Artificial Example - Results

m

G

€ 400 - R

I

[}

= o Able to detect 1024 native instructions in a
qé 200 e single trace

=

é e Spatial resolution similar to web-based cache
S o MUY attacks (Prime+Probe)

b 0 10 20 30 40

Measurements (nbjnstr = 10)

Figure 1: Secret key: 1101001.

15

Side-Channel Artificial Example - Results

m

G

€ 400 - R

I

[}

= o Able to detect 1024 native instructions in a
qé 200 e single trace

=

é e Spatial resolution similar to web-based cache
S o MUY attacks (Prime+Probe)

b 0 10 20 30 40

e Timers are the main bottleneck
Measurements (nbjnstr = 10)

Figure 1: Secret key: 1101001.

15

Covert Channel

Composed of two components:
e Native: C/x86 sender
e Web: JavaScript/WebAssembly receiver

I 1JS sandbox

User applications Sender © . |Receiver| ! |

Hardware:

CPU Ports

16

Covert Channel

Composed of two components:

e Native: C/x86 sender

e Web: JavaScript/WebAssembly receiver

User applications @
Results:

e 200bit/s

e 6% frameloss

Hardware:
CPU Ports

16

Covert Channel

Composed of two components:

e Native: C/x86 sender

e Web: JavaScript/WebAssembly receiver

User applications

Results:

e 200bit/s OS """"""""""""""""""""""""""

e 6% frameloss
Hardware:
Other settings: CPU Ports

e Host-to-VM

16

Covert Channel

Composed of two components:

e Native: C/x86 sender

e Web: JavaScript/WebAssembly receiver

dbox [
Receiver | | |

User applications

 bro
11 JS sandbox
. . | Sender

Results: FAN DR S
e 200bit/s
0s
e 6% frameloss
Hardware:
Other settings: CPU Ports

e Host-to-VM

e Cross Browser

16

Countermeasures

Hardware: Disable SMT, dynamic SMT
0S: Port-independent code, port-aware scheduler

Browser: Removing high-resolution timers, process isolation.

17

Conclusion

First implementation of port contention in the browser

Fastest covert channel existing in the browser

High spatial resolution

o Breaks the isolation of browser: cross-origin communication is possible, even
through virtualized environments

18

Contact me here: thomas.rokicki@irisa.fr
Feel free to read the paper for more technical details!

Find the code here: https://github.com/MIAQUS-group/web-port-contention

19

