
Port Contention Goes Portable: Port Contention

Side-Channels in Web Browsers

Thomas Rokicki - Univ Rennes, CNRS, IRISA

Clémentine Maurice - Univ Lille, CNRS, Inria

Marina Botvinnik - Ben-Gurion University of the Negev

Yossi Oren - Ben-Gurion University of the Negev

SOSYSEC - 13/05/2022

1



Background: Microarchitectural attacks

Exploit subtle timing differences caused by the

microarchitecture.

Cache attacks are the most famous, but most

microarchitectural optimizations are targeted.

Here: CPU Ports

Front End Instruction
Cache Tag

µOP Cache
Tag

L1 Instruction Cache
32KiB 8-Way Instruction

TLB

Instruction Fetch & PreDecode
(16 B window)

Instruction Queue

MOP

MicroCode
Sequencer

ROM
(MS ROM)

Decoded Stream Buffer (DSB)
(µOP Cache)

(1.5k µOPs; 8-Way)
(64 B window)

Branch
Predictor

(BPU)

Allocation Queue (IDQ) (128, 2x64 µOPs)

L2 C
ache

256K
iB

 4-W
ay

U
nified S

T
LB

 

Execution Engine

Memory Subsystem

L1 Data Cache
32KiB 8-Way

Data TLB

Scheduler
Unified Reservation Station (RS)

(97 entries)

Integer Physical Register File
(180 Registers)

Vector Physical Register File
(168 Registers)

Port 0 Port 1 Port 5 Port 6 Port 2 Port 3 Port 4 Port 7

INT ALU
INT DIV

INT Vect ALU
INT Vect MUL

FP FMA
AES

Vect String
FP DIV

INT ALU
INT MUL

INT Vect ALU
INT Vect MUL

FP FMA
Bit Scan

INT ALU
Vect Shuffle

INT Vect ALU
LEA

INT ALU
Branch

AGU
Load Data

AGU
Load Data

AGU

(56 entries)
Store Buffer & Forwarding

32
B

/c
yc

le

µOPµOPµOPµOPµOPµOPµOPµOP

(50, 2x25 entries)

16 Bytes/cycle

µOPµOPµOPµOPµOPµOP

Macro-Fusion

MOP MOP MOP MOP

MOPMOP MOP MOP MOP MOP

Micro-Fusion

64B
/cycle

64B
/cycle

Stack
Engine

(SE)

Adder Adder Adder

1-4 µOPs µOP µOPµOPµOP

Complex
Decoder

5-Way Decode 

Simple
Decoder

Simple
Decoder

Simple
Decoder

Simple
Decoder

4 µOPs

MUX

5 µOPs

 Loop Stream
Detector (LSD) 

Register Alias Table (RAT)
4 µOP

Branch Order Buffer
(BOB) (48-entry)

Rename / Allocate / Retirement
ReOrder Buffer (224 entries)

Zeroing IdiomsMove Elimination Ones Idioms

Line Fill Buffers (LFB)
(10 entries)

Store Data

32
B

/c
yc

le

32B/cycle

256bit/cycle

Load Buffer
(72 entries)

6 µOPs

EUs

µOPµOPµOPµOPµOPµOPµOPµOP

C
o
m

m
o
n

 D
a
ta

 B
u

s
e
s
 (C

D
B

s
)

Int

In
t V

e
c
t

FP

Load

Store

Branch

To L3

32B/cycle

2



Background: Microarchitectural attacks

Exploit subtle timing differences caused by the

microarchitecture.

Cache attacks are the most famous, but most

microarchitectural optimizations are targeted.

Here: CPU Ports

Front End Instruction
Cache Tag

µOP Cache
Tag

L1 Instruction Cache
32KiB 8-Way Instruction

TLB

Instruction Fetch & PreDecode
(16 B window)

Instruction Queue

MOP

MicroCode
Sequencer

ROM
(MS ROM)

Decoded Stream Buffer (DSB)
(µOP Cache)

(1.5k µOPs; 8-Way)
(64 B window)

Branch
Predictor

(BPU)

Allocation Queue (IDQ) (128, 2x64 µOPs)

L2 C
ache

256K
iB

 4-W
ay

U
nified S

T
LB

 

Execution Engine

Memory Subsystem

L1 Data Cache
32KiB 8-Way

Data TLB

Scheduler
Unified Reservation Station (RS)

(97 entries)

Integer Physical Register File
(180 Registers)

Vector Physical Register File
(168 Registers)

Port 0 Port 1 Port 5 Port 6 Port 2 Port 3 Port 4 Port 7

INT ALU
INT DIV

INT Vect ALU
INT Vect MUL

FP FMA
AES

Vect String
FP DIV

INT ALU
INT MUL

INT Vect ALU
INT Vect MUL

FP FMA
Bit Scan

INT ALU
Vect Shuffle

INT Vect ALU
LEA

INT ALU
Branch

AGU
Load Data

AGU
Load Data

AGU

(56 entries)
Store Buffer & Forwarding

32
B

/c
yc

le

µOPµOPµOPµOPµOPµOPµOPµOP

(50, 2x25 entries)

16 Bytes/cycle

µOPµOPµOPµOPµOPµOP

Macro-Fusion

MOP MOP MOP MOP

MOPMOP MOP MOP MOP MOP

Micro-Fusion

64B
/cycle

64B
/cycle

Stack
Engine

(SE)

Adder Adder Adder

1-4 µOPs µOP µOPµOPµOP

Complex
Decoder

5-Way Decode 

Simple
Decoder

Simple
Decoder

Simple
Decoder

Simple
Decoder

4 µOPs

MUX

5 µOPs

 Loop Stream
Detector (LSD) 

Register Alias Table (RAT)
4 µOP

Branch Order Buffer
(BOB) (48-entry)

Rename / Allocate / Retirement
ReOrder Buffer (224 entries)

Zeroing IdiomsMove Elimination Ones Idioms

Line Fill Buffers (LFB)
(10 entries)

Store Data

32
B

/c
yc

le

32B/cycle

256bit/cycle

Load Buffer
(72 entries)

6 µOPs

EUs

µOPµOPµOPµOPµOPµOPµOPµOP

C
o
m

m
o
n

 D
a
ta

 B
u

s
e
s
 (C

D
B

s
)

Int

In
t V

e
c
t

FP

Load

Store

Branch

To L3

32B/cycle

2



Background: Hyperthreading

Simultaneous computation technology of Intel.

• Physical cores are shared in several (often 2)

logical cores

• Abstraction at the OS level

• Hardware resources are shared between

logical cores

3



Background: Hyperthreading

Simultaneous computation technology of Intel.

• Physical cores are shared in several (often 2)

logical cores

• Abstraction at the OS level

• Hardware resources are shared between

logical cores

3



Background: Execution pipeline

• Instructions are decomposed in

micro-operations (µops) to optimize

Out-of-Order computation

• The decomposition of instructions into

µops is deterministic

• µops are dispatched to specialized

execution units through CPU ports

Thread 1 Decoder Thread 2
fetch fetch

µops

scheduler

Execution engine

P0 P1 P2 P3 P4 P5 P6 P7

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

µop

4



Background: Port contention

Attacker

Victim

Attacker

instr

Scheduler

Port 1

Atk

instr

Atk

instr

Execution
engine

Attacker

Victim

Attacker

instr

Victim
instr

Scheduler

Port 1

Atk

instr

Victim

instr

Atk

instr

Execution
engine

No Contention All the attacker

instructions are executed in

a row, fast execution time

Contention Attacker instructions are

delayed, slow execution

time

5



State of the Art: Port contention attacks

Aldaya et al. 1 introduced the first attack with port contention, natively attacking

OpenSSL’s TLS and stealing private keys

Port contention was also used as a side-channel to mount speculative execution

attacks2.

1Aldaya et al. , Port Contention for Fun and Profit, S&P, 2019
2Bhattacharyya et al. , Smotherspectre: Exploiting speculative execution through port contention,

CCS, 2019.

6



Port contention prerequisites

• Attacker code must run on the victim’s hardware

• Attacker and victim must be on the same physical core

• Attacker must have access to high-resolution timers

7



Background: JavaScript and WebAssembly

• Runs code on the client’s hardware.

• JIT compilation.

• Sandboxed

• Runs code on the client’s hardware

• Compiled from another language

• Sandboxed

• Smaller, more atomic instructions

8



Threat model

Client side languages run on the client’s hardware.

We can run port contention attacks on the victim’s hardware

Malicious website or advertisement

9



Threat model

Client side languages run on the client’s hardware.

We can run port contention attacks on the victim’s hardware

Malicious website or advertisement

9



C1 - Core control

JavaScript does not have core control

10



C1 - Core control

JavaScript does not have core control

The scheduler tries to balance the workload of

physical cores.

10



C1 - Core control

JavaScript does not have core control

The scheduler tries to balance the workload of

physical cores.

Solution: Exploit JavaScript multithreading and

work with the scheduler

10



C2 - high-resolution timers

To prevent timing attacks, browsers removed access to

JavaScript high-resolution timers, and added jitter to the mea-

surements.

Build auxiliary timers with a resolution of several nanosec-

onds3.

For most experiments in this paper, we use a timer based on

SharedArrayBuffer.

11



C2 - high-resolution timers

To prevent timing attacks, browsers removed access to

JavaScript high-resolution timers, and added jitter to the mea-

surements.

Build auxiliary timers with a resolution of several nanosec-

onds3.

For most experiments in this paper, we use a timer based on

SharedArrayBuffer.

3Schwarz et al. , Fantastic timers and where to find them, Financial Cryptography, 2017

Rokicki et al. , Sok: In search of lost time: A review of javascript timers in browsers, EuroS&P, 2021

11



C2 - high-resolution timers

To prevent timing attacks, browsers removed access to

JavaScript high-resolution timers, and added jitter to the mea-

surements.

Build auxiliary timers with a resolution of several nanosec-

onds3.

For most experiments in this paper, we use a timer based on

SharedArrayBuffer.

3Schwarz et al. , Fantastic timers and where to find them, Financial Cryptography, 2017

Rokicki et al. , Sok: In search of lost time: A review of javascript timers in browsers, EuroS&P, 2021

11



Proof of Concept

The proof of concept is composed of two components:

Native : A C script that runs TZCNT x86 instructions (P1 µop) on all physical

cores

Web : A WebAssembly/JavaScript script repeatedly calling the i64.ctz

instruction and timing the execution

We run two experiments:

Control : The web script runs alone in the browser

Contention : Both web and script components are executed together

12



PoC - Results

4.7 4.75 4.8 4.85 4.9 4.95 5
0

20

40

60

Execution time (ms)

P
er

ce
n

ta
ge

of
o

cc
u

rr
en

ce
s

Control experiment
P1 contention

Figure 1: Port 1 contention experiment on i64.ctz for 1 000 000 instructions.

13



PC-Detector

We don’t know the port usage of WebAssembly instructions.

So we built PC-Detector

Test the contention of 244 WebAssembly instructions with our knowledge of native

port usage.

14



PC-Detector - Description

PC-Detector is also composed of a native spammer and a web tester.

For each WebAssembly instruction, we run the following experiments:

Control : The web script runs alone in the browser

Contention on Port x : The web script runs while the native component repeatedly

calls an instruction creating contention on Port x

We test all instructions with ports 0,1,(2,3),5 and 6.

15



PC-Detector - Metrics

Some instructions create ”better” contention than others, i.e., the two distributions are

more distinguishable. We need metrics to evaluate them.

Error rate : Given a threshold, ratio of control values computed as contention

values and vice versa

Cohen’s Distance : Distance between the two distributions divided by their spread.

16



PC-Detector - Metrics

Some instructions create ”better” contention than others, i.e., the two distributions are

more distinguishable. We need metrics to evaluate them.

Error rate : Given a threshold, ratio of control values computed as contention

values and vice versa

Cohen’s Distance : Distance between the two distributions divided by their spread.

16



PC-Detector - Metrics

Some instructions create ”better” contention than others, i.e., the two distributions are

more distinguishable. We need metrics to evaluate them.

Error rate : Given a threshold, ratio of control values computed as contention

values and vice versa

Cohen’s Distance : Distance between the two distributions divided by their spread.

16



PC-Detector - Results

We tested over 200 different instructions.

• 80 instructions creating contention

• 4 ports: 0, 1, 5 and 6

• Best instruction is i64.rem u

17



Side-Channel Artificial Example - Description

Generic example of a side channel attack. Web sender attacks a native victim and

extracts a secret.

Victim

secret == 0

POPCNT %r8,%r8

POPCNT %r8,%r8

...

POPCNT %r8,%r8

POPCNT %r8,%r8

Contention on Port 1

secret == 1

VPBROADCASTD %xmm0, %ymm0

VPBROADCASTD %xmm0, %ymm0

...

VPBROADCASTD %xmm0, %ymm0

VPBROADCASTD %xmm0, %ymm0

Contention on Port 5

Monitors port usage

18



Side-Channel Artificial Example - Description

Generic example of a side channel attack. Web sender attacks a native victim and

extracts a secret.

Victim

secret == 0

POPCNT %r8,%r8

POPCNT %r8,%r8

...

POPCNT %r8,%r8

POPCNT %r8,%r8

secret == 1

VPBROADCASTD %xmm0, %ymm0

VPBROADCASTD %xmm0, %ymm0

...

VPBROADCASTD %xmm0, %ymm0

VPBROADCASTD %xmm0, %ymm0

Contention on Port 1

Secret is 0!

18



Side-Channel Artificial Example - Description

Generic example of a side channel attack. Web sender attacks a native victim and

extracts a secret.

Victim

secret == 0

POPCNT %r8,%r8

POPCNT %r8,%r8

...

POPCNT %r8,%r8

POPCNT %r8,%r8

secret == 1

VPBROADCASTD %xmm0, %ymm0

VPBROADCASTD %xmm0, %ymm0

...

VPBROADCASTD %xmm0, %ymm0

VPBROADCASTD %xmm0, %ymm0

Contention on Port 5

Secret is 1!

18



Side-Channel Artificial Example - Results

0 10 20 30 40
0

200

400

Measurements (nbinstr = 10)

E
xe

cu
ti

on
ti

m
e

(i
n

cr
em

en
ts

)

Figure 2: Secret key: 1101001.

• Able to detect 1024 native instructions in a

single trace

• Spatial resolution similar to web-based cache

attacks (Prime+Probe)

• Timers are the main bottleneck

19



Side-Channel Artificial Example - Results

0 10 20 30 40
0

200

400

Measurements (nbinstr = 10)

E
xe

cu
ti

on
ti

m
e

(i
n

cr
em

en
ts

)

Figure 2: Secret key: 1101001.

• Able to detect 1024 native instructions in a

single trace

• Spatial resolution similar to web-based cache

attacks (Prime+Probe)

• Timers are the main bottleneck

19



Side-Channel Artificial Example - Results

0 10 20 30 40
0

200

400

Measurements (nbinstr = 10)

E
xe

cu
ti

on
ti

m
e

(i
n

cr
em

en
ts

)

Figure 2: Secret key: 1101001.

• Able to detect 1024 native instructions in a

single trace

• Spatial resolution similar to web-based cache

attacks (Prime+Probe)

• Timers are the main bottleneck

19



Covert Channel - Threat Model

Composed of two components:

• Native: C/x86 sender

• Web: JavaScript/WebAssembly receiver

Example threats:

• Extracting sensible data

• Exchanging cookies and tracking

• Monitoring

Hardware:

CPU Ports

OS

User applications Receiver

JS sandbox

browser

Sender

20



Covert Channel - Threat Model

Composed of two components:

• Native: C/x86 sender

• Web: JavaScript/WebAssembly receiver

Example threats:

• Extracting sensible data

• Exchanging cookies and tracking

• Monitoring

Hardware:

CPU Ports

OS

User applications Receiver

JS sandbox

browser

Sender

20



Covert Channel - Physical layer

0 50 100 150
80

90

100

110

120

Time

E
xe

cu
ti

on
ti

m
e

(i
n

cr
em

en
ts

)

Figure 3: Transmitted square signal

• Sending a 1-bit by creating contention

on Port 1

• Receiving bits by measuring execution

time of Port 1 instructions

• Fixed bit duration of tbit

21



Covert Channel - Data-Link layer

Data is separated in frames:

• Sequence number to handle

synchronization

• Error-detecting code for bit

insertion/deletion

Simple request-to-send protocol to handle

lost frames

Frames start are detected using a density

clustering algorithm.

Sender Receiver

Request 0

Data 0

Request 1

Request 1

Data 1

Request 1

Data 1

×

×

22



Covert Channel - Data-Link layer

Data is separated in frames:

• Sequence number to handle

synchronization

• Error-detecting code for bit

insertion/deletion

Simple request-to-send protocol to handle

lost frames

Frames start are detected using a density

clustering algorithm.

Sender Receiver

Request 0

Data 0

Request 1

Request 1

Data 1

Request 1

Data 1

×

×

22



Covert Channel - Data-Link layer

Data is separated in frames:

• Sequence number to handle

synchronization

• Error-detecting code for bit

insertion/deletion

Simple request-to-send protocol to handle

lost frames

Frames start are detected using a density

clustering algorithm.

Sender Receiver

Request 0

Data 0

Request 1

Request 1

Data 1

Request 1

Data 1

×

×

22



Covert Channel - Evaluation

We found tbit = 1 ms to be best.

On a quiet system, we obtain the following results:

• 200 bit/s of effective data (Best bandwidth for

a web-based covert channel!)

• 6% of frame loss

We evaluated the covert channel with noise:

• stress -m 2: 170 bit/s

• stress -m 3: 25 bit/s

Due to the same-core nature of port contention.

23



Covert Channel - Evaluation

We found tbit = 1 ms to be best.

On a quiet system, we obtain the following results:

• 200 bit/s of effective data (Best bandwidth for

a web-based covert channel!)

• 6% of frame loss

We evaluated the covert channel with noise:

• stress -m 2: 170 bit/s

• stress -m 3: 25 bit/s

Due to the same-core nature of port contention.

23



Covert Channel - Evaluation

We found tbit = 1 ms to be best.

On a quiet system, we obtain the following results:

• 200 bit/s of effective data (Best bandwidth for

a web-based covert channel!)

• 6% of frame loss

We evaluated the covert channel with noise:

• stress -m 2: 170 bit/s

• stress -m 3: 25 bit/s

Due to the same-core nature of port contention.

23



Covert Channel - VM-to-host

VM-to-host scenario

No control of real OS cores on the native sender.

80 bit/s bandwidth.
Hardware:

CPU Ports

OS

User applications Receiver

JS sandbox

browser

Sender

Virtual machine

24



Covert Channel - Cross-Browser

Hardware:

CPU Ports

OS

User applications Receiver

JS sandbox

browser

Sender

JS sandbox

browser

Browser-to-browser scenario.

No control of cores, everything is handled by

multithreading.

200 bit/s bandwidth at physical layer.

Even works with different browsers!

25



Countermeasures - Hardware Level

Disabling SMT: High performance cost (15%)

Dynamic sharing of resources:

• Temporal sharing: At a given time, a resource

is available to only one thread4

• Adaptative sharing: When computing critical

information, resources are not shared5

26



Countermeasures - Hardware Level

Disabling SMT: High performance cost (15%)

Dynamic sharing of resources:

• Temporal sharing: At a given time, a resource

is available to only one thread4

• Adaptative sharing: When computing critical

information, resources are not shared5

4Townley and Ponomarev, SMT-COP: defeating side-channel attacks on execution units in SMT

processors, PACT, 2019.
5Mohammadkazem et al. , Secsmt: Securing SMT processors against contention-based covert

channel, Usenix, 2022

26



Countermeasures - OS and software level

• Static / dynamic analysis

• Port-independent code

• Port-aware scheduler

27



Countermeasures - OS and software level

• Static / dynamic analysis

• Port-independent code

• Port-aware scheduler

27



Countermeasures - OS and software level

• Static / dynamic analysis

• Port-independent code

• Port-aware scheduler

27



Countermeasures - Browser level

• Remove high-resolution timers

• Grant more isolation to processes

Countermeasures are not really suited for browsers.

28



Countermeasures - Browser level

• Remove high-resolution timers

• Grant more isolation to processes

Countermeasures are not really suited for browsers.

28



Future work

• Implement a cryptographic side-channel attack

• Study in more details the translation of web-to-native code

• Find other vectors of contention, automatically or across cores

29



Conclusion

• First implementation of port contention in the browser

• Fastest covert channel existing in the browser

• High spatial resolution

• Breaks the isolation of browser: cross-origin communication is possible, even

through virtualized environments

30



Questions?

Contact me here: thomas.rokicki@irisa.fr

Feel free to read the paper for more technical details!

Find the code here: https://github.com/MIAOUS-group/web-port-contention

31


