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Background: Microarchitectural attacks

Exploit subtle timing differences caused by the

microarchitecture.

Cache attacks are the most famous, but most

microarchitectural optimizations are targeted.

Here: CPU Ports
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Background: Hyperthreading

Simultaneous computation technology of Intel.

• Physical cores are shared in several (often 2)

logical cores

• Abstraction at the OS level

• Hardware resources are shared between

logical cores
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Background: Execution pipeline

• Instructions are decomposed in

micro-operations (µops) to optimize

Out-of-Order computation

• The decomposition of instructions into

µops is deterministic

• µops are dispatched to specialized

execution units through CPU ports
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Background: Port contention
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State of the Art: Port contention attacks

Aldaya et al. 1 introduced the first attack with port contention, natively attacking

OpenSSL’s TLS and stealing private keys

Port contention was also used as a side-channel to mount speculative execution

attacks2.

1Aldaya et al. , Port Contention for Fun and Profit, S&P, 2019
2Bhattacharyya et al. , Smotherspectre: Exploiting speculative execution through port contention,

CCS, 2019.
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Port contention prerequisites

• Attacker code must run on the victim’s hardware

• Attacker and victim must be on the same physical core

• Attacker must have access to high-resolution timers
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Background: JavaScript and WebAssembly

• Runs code on the client’s hardware.

• JIT compilation.

• Sandboxed

• Runs code on the client’s hardware

• Compiled from another language

• Sandboxed

• Smaller, more atomic instructions
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Threat model

Client side languages run on the client’s hardware.

We can run port contention attacks on the victim’s hardware

Malicious website or advertisement

9



Threat model

Client side languages run on the client’s hardware.

We can run port contention attacks on the victim’s hardware

Malicious website or advertisement

9



C1 - Core control

JavaScript does not have core control
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C1 - Core control

JavaScript does not have core control

The scheduler tries to balance the workload of

physical cores.

Solution: Exploit JavaScript multithreading and

work with the scheduler
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C2 - high-resolution timers

To prevent timing attacks, browsers removed access to

JavaScript high-resolution timers, and added jitter to the mea-

surements.

Build auxiliary timers with a resolution of several nanosec-

onds3.

For most experiments in this paper, we use a timer based on

SharedArrayBuffer.
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Proof of Concept

The proof of concept is composed of two components:

Native : A C script that runs TZCNT x86 instructions (P1 µop) on all physical

cores

Web : A WebAssembly/JavaScript script repeatedly calling the i64.ctz

instruction and timing the execution

We run two experiments:

Control : The web script runs alone in the browser

Contention : Both web and script components are executed together

12



PoC - Results
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Figure 1: Port 1 contention experiment on i64.ctz for 1 000 000 instructions.
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PC-Detector

We don’t know the port usage of WebAssembly instructions.

So we built PC-Detector

Test the contention of 244 WebAssembly instructions with our knowledge of native

port usage.
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PC-Detector - Description

PC-Detector is also composed of a native spammer and a web tester.

For each WebAssembly instruction, we run the following experiments:

Control : The web script runs alone in the browser

Contention on Port x : The web script runs while the native component repeatedly

calls an instruction creating contention on Port x

We test all instructions with ports 0,1,(2,3),5 and 6.
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PC-Detector - Metrics

Some instructions create ”better” contention than others, i.e., the two distributions are

more distinguishable. We need metrics to evaluate them.

Error rate : Given a threshold, ratio of control values computed as contention

values and vice versa

Cohen’s Distance : Distance between the two distributions divided by their spread.
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PC-Detector - Results

We tested over 200 different instructions.

• 80 instructions creating contention

• 4 ports: 0, 1, 5 and 6

• Best instruction is i64.rem u
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Side-Channel Artificial Example - Description

Generic example of a side channel attack. Web sender attacks a native victim and

extracts a secret.

Victim

secret == 0

POPCNT %r8,%r8

POPCNT %r8,%r8

...

POPCNT %r8,%r8

POPCNT %r8,%r8

Contention on Port 1

secret == 1

VPBROADCASTD %xmm0, %ymm0

VPBROADCASTD %xmm0, %ymm0

...

VPBROADCASTD %xmm0, %ymm0

VPBROADCASTD %xmm0, %ymm0

Contention on Port 5

Monitors port usage
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Side-Channel Artificial Example - Results
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Figure 2: Secret key: 1101001.

• Able to detect 1024 native instructions in a

single trace

• Spatial resolution similar to web-based cache

attacks (Prime+Probe)

• Timers are the main bottleneck
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Covert Channel - Threat Model

Composed of two components:

• Native: C/x86 sender

• Web: JavaScript/WebAssembly receiver

Example threats:

• Extracting sensible data

• Exchanging cookies and tracking

• Monitoring

Hardware:

CPU Ports

OS

User applications Receiver

JS sandbox

browser

Sender
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Covert Channel - Physical layer
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Figure 3: Transmitted square signal

• Sending a 1-bit by creating contention

on Port 1

• Receiving bits by measuring execution

time of Port 1 instructions

• Fixed bit duration of tbit
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Covert Channel - Data-Link layer

Data is separated in frames:

• Sequence number to handle

synchronization

• Error-detecting code for bit

insertion/deletion

Simple request-to-send protocol to handle

lost frames

Frames start are detected using a density

clustering algorithm.

Sender Receiver

Request 0

Data 0

Request 1

Request 1

Data 1

Request 1

Data 1

×

×
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Covert Channel - Evaluation

We found tbit = 1 ms to be best.

On a quiet system, we obtain the following results:

• 200 bit/s of effective data (Best bandwidth for

a web-based covert channel!)

• 6% of frame loss

We evaluated the covert channel with noise:

• stress -m 2: 170 bit/s

• stress -m 3: 25 bit/s

Due to the same-core nature of port contention.
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Covert Channel - VM-to-host

VM-to-host scenario

No control of real OS cores on the native sender.

80 bit/s bandwidth.
Hardware:

CPU Ports

OS

User applications Receiver

JS sandbox

browser

Sender

Virtual machine

24



Covert Channel - Cross-Browser

Hardware:

CPU Ports

OS

User applications Receiver

JS sandbox

browser

Sender

JS sandbox

browser

Browser-to-browser scenario.

No control of cores, everything is handled by

multithreading.

200 bit/s bandwidth at physical layer.

Even works with different browsers!
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Countermeasures - Hardware Level

Disabling SMT: High performance cost (15%)

Dynamic sharing of resources:

• Temporal sharing: At a given time, a resource

is available to only one thread4

• Adaptative sharing: When computing critical

information, resources are not shared5
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Countermeasures - Hardware Level

Disabling SMT: High performance cost (15%)

Dynamic sharing of resources:

• Temporal sharing: At a given time, a resource

is available to only one thread4

• Adaptative sharing: When computing critical

information, resources are not shared5

4Townley and Ponomarev, SMT-COP: defeating side-channel attacks on execution units in SMT

processors, PACT, 2019.
5Mohammadkazem et al. , Secsmt: Securing SMT processors against contention-based covert

channel, Usenix, 2022
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Countermeasures - OS and software level

• Static / dynamic analysis

• Port-independent code

• Port-aware scheduler
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Countermeasures - Browser level

• Remove high-resolution timers

• Grant more isolation to processes

Countermeasures are not really suited for browsers.
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Future work

• Implement a cryptographic side-channel attack

• Study in more details the translation of web-to-native code

• Find other vectors of contention, automatically or across cores
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Conclusion

• First implementation of port contention in the browser

• Fastest covert channel existing in the browser

• High spatial resolution

• Breaks the isolation of browser: cross-origin communication is possible, even

through virtualized environments
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Questions?

Contact me here: thomas.rokicki@irisa.fr

Feel free to read the paper for more technical details!

Find the code here: https://github.com/MIAOUS-group/web-port-contention
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